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that have paved the way for Artificial Intelligence over the decades past,
and are paving the way for its future in the decades to come.






PREFACE

What This Book is About
and How to Read It

"We're at the beginning of a golden age of Al. Recent advancements
have already led to inventions that previously lived in the realm of science
fiction—and we've only scratched the surface of what's possible.”

Jeff Bezos, Amazon CEO

Few terms have captured our imagination in recent times like “Artificial
Intelligence.” And not just through sensationalized media articles about how
Al will soon displace all jobs and rule the world, but also through movies,
books, and television shows. It now seems that everyone “knows” about Al;
that everyone has an opinion. And yet, in our experience, few people actually
understand what Artificial Intelligence is and isn’t, where the field came from
and where it’s heading, and how the technology can be harnessed to generate
commercial outcomes.

Given the immense amount of disinformation and misunderstanding, we
have written this book to demystify the subject of Al and explain it in simple
language. Most importantly, we have written this book with the business
manager in mind, someone interested in the topic from a real-world, com-
mercial perspective—a perspective of how the technology can create value and
increase competitiveness zoday, rather than what might happen in 25 years’
time or how a superior intelligence might overcome the human race in the
distant future. Such philosophical treatises are thought-provoking (to say the
least) and the subject of many books published each year, but this isn’t one of
them. Instead, 7he Rise of Artificial Intelligence provides a commercial explo-
ration of Al, with particular emphasis on how Al-based systems can improve
decision making in organizations of all shapes and sizes.

As such, this book presents Artificial Intelligence through the lens of
decision making for two reasons: First, because the world has reached a level
of such unprecedented speed, complexity, and noise, that no one can assess
and evaluate all the available data when making decisions; and secondly,
because the decisions we make affect the outcomes we achieve. In other words,
better business decisions lead to better business outcomes. Although Artificial
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Intelligence can be applied to many areas besides decision making—such as
automation and robotics, or image and speech recognition—these subjects
don't feature heavily in the pages ahead except for Chapter 1, where we provide
an overview of the research areas of Al. Ultimately, revenue and margin growth
comes down to the decisions an organization makes (or doesnt make), and
hence the application of Al to decision making is our primary focus.

To best present the concepts in this book, we've used a problem-to-decision
pyramid to represent the continuum that exists in terms of an organization’s
ability to improve its decision making:

Knowledge
\
A

Each layer of this pyramid represents a step in the journey for improved
decision making: the higher we go, the better our decisions (and the more
value we can create). The structure of 7he Rise of Artificial Intelligence reflects
the structure of this pyramid, with the first two parts of the book investigating
each layer of the pyramid, and the last two parts illustrating the application
of Artificial Intelligence to real-world problems for the purpose of generating
revenue and margin growth.

Chapter 1 begins with a high-level overview of Artificial Intelligence—its
history, areas of research, and current progress and challenges—before intro-
ducing the problem-to-decision pyramid in Chapter 2, which conceptualizes the
journey from defining a problem to making a decision through the use of
data, information, knowledge, prediction, and optimization. Chapter 3 con-
cludes Part 1with an in-depth examination of a complex business problem set
in the fast-moving consumer goods industry, which is used to explain the role
of objectives, business rules and constraints, and the application of Artificial
Intelligence algorithms for improved decision making.
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This complex business problem of promotional planning and pricing is
then used as a running example throughout Part II, which explores the inner
workings of predictive models, optimization methods, and various learning
algorithms. Because data and modeling form the basis of prediction and optimi-
zation, this part of the book opens with a chapter on data and modeling, along
with a discussion of common issues such as data availability, completeness, and
preparation. In Chapters 5 and 6 we review various Al and non-Al methods for
predictive modeling and optimization, whereas in Chapter 7 we present adapt-
ability and learning concepts—which together (i.e. prediction, optimization,
and self-learning) comprise the backbone of any Al-based software system.

As an important aside, Chapters 4 through 7 represent the most technical
material of the entire book, attempting to explain the innermost mechanics of
several Artificial Intelligence algorithms such as neural networks and genetic
programming. Although non-technical readers can easily progress through
Part II to gain a deeper understanding of algorithms and models, readers
without an interest in data, problem modeling, or how Artificial Intelligence
algorithms work, can jump straight to Part III, which presents real-world
applications of Artificial Intelligence.

The application areas in Part III explore the problem-to-decision pyramid
in the context of real-world problems and business objectives, covering both
the lower layers of the pyramid focusing on data and the analytical landscape
of an organization (i.e. information and knowledge), as well as the upper
layers of prediction, optimization, and self-learning, and how they’re enabled
by Artificial Intelligence methods. For ease of reading, we've divided Part 111
into three chapters, each being dedicated to a specific business function—in
particular, sales, marketing, and supply chain. These case studies are based on an
enterprise software platform called Decision Cloud®, which is a modularized,
cloud-based platform that empowers staff to make better and faster decisions
through the use of Artificial Intelligence.

And finally, Part IV concludes the book with common questions and
concerns that organizations have on the application of Artificial Intelligence,
such as: “Would Al work for me?”and “Where should I start?” These two chapters
provide practical advice for selecting the right business problem, developing a
business case, choosing a technology partner, as well as other topics such as
digitalization and change management.

To improve the reader’s understanding of the content, we've also created
a set of supplementary videos that can be accessed at: www.Complexica.

com/book/RiseofAl/. These videos bring to life the concepts presented in

each chapter—for example, by providing a visual explanation of ant system
algorithms in Chapter 1, the layers of the problem-to-decision pyramid in
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Chapter 2, the workflow of promotional planning and pricing in Chapter 3,
and so on. In these videos we're able to “show” concepts that can only be “told”
within the confines of the printed page.

In terms of how to read this book or watch the videos, the ideal way is to
progress sequentially from Chapter 1 to 12. For the less technically-inclined
reader, however it’s possible to jump around in any sequence that best satisfies
curiosity and interest. For example, the reader might begin with an overview
of Artificial Intelligence in Chapter 1, then progress to the application areas in
Chapters 8, 9, and 10, before returning to Chapters 2 and 3 to better appre-
ciate the problem-to-decision pyramid and the intricacies of solving complex
business problems (after all, why are complex business problem so difficult
to solve?). Alternatively, a reader might start with the application areas in
Chapters 8, 9, and 10, then move back into Part II to better understand how
algorithms and models work, before progressing to Part IV for practical advice
for initiating an Artificial Intelligence project.

However, regardless of the reader’s technical sophistication or their interest
in the implementation aspects of Al-based software, it’s highly recommended
that everyone start with the first two chapters for an introduction into the
world of Artificial Intelligence and an overview of basic concepts and termin-
ology. From this perspective, the sequence of reading the remaining chapters
is of far lesser importance.

Lastly, we'd like to say that the material presented in this book is the result
of 40 years of first-hand Artificial Intelligence research within university
settings, and more than twenty years of implementing Al-based enterprise
software systems in many (often very large') organizations across three con-
tinents. With that in mind, wed like to thank everyone who made this book
possible, with our special appreciation going to many Australian companies
we collaborated with over the years in the application of Artificial Intelligence,
such as PFD Foods, BHP Billiton, BMA, Pernod Ricard Winemakers, Lion
Drinks, Bunzl, DuluxGroup, Rio Tinto, Metcash, Pfizer, Janssen, Haircare
Australia, Fortescue Metals Group, CBH Group, Roy Hill, Glencore, Polyaire,
Treasury Wine Estates, and Costa Group. Within these companies, we'd like to
thank Chris Baddock, John Barakat, Renato Bellon, Simon Bennett, Damian
Bourne, Warren Brodie, Michael Brooks, Pierre-Yves Calloc’h, Daryl Chim,

1 Our experiences of implementing enterprise-grade software based on the latest Artificial
Intelligence algorithms and methods are based on many projects with global giants—such
as BHP Billiton, General Motors, Bank of America, Pernod Ricard, Unilever, Air Liquide,
Ford Motor Company, Glencore, Beiersdorf, Rio Tinto, and ChevronTexaco, among many
others—as well as smaller companies that benefited from the research & development and
innovation carried out by these larger organizations.
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Richard Cohen, Jevan Dickinson, Andrew Endicott, Eglantine Etiemble, Scott
Fellingham, Greg Feutrill, Garth Gauvin, Ward Gauvin, Scott Graham, Chris
Green, Kylie Grigg, Richard Hansen, Mark Hayden, Kim Heatherton, Mark
Ivory, James Jones, Mike Lomman, Brett McKinnon, Stuart McNab, Doug
Misener, Luke Mitchell, Stephen Mooney, Aemel Nordin, Mark Powell, Rod
Pritchard, Robin Pyne, Mathew Regan, Darryl Schafferius, Mark Shephard,
Jon Simpson, Kerry Smith, Richard Taylor, Soner Teknikeller, Lance Ward,
John Warda, and Joel Zamek.

Wed also like thank a few individuals who contributed to the content and
ideas in this book, namely, Reza Bonyadi, Lukasz Brocki, Tom Heyworth,
Xiang Li, Lukasz Olech, Ali Shemshadi, Larisa Stamova, Chris Zhu, as well as
members of Complexica’s scientific advisory board who we've worked with over
the years: Reza Bonyadi, Lukasz Brocki, Longbing Cao, Raymond Chiong, Vic
Ciesielski, Carlos Coello, Ernesto Costa, Kalyanmoy Deb, Kenneth De Jong,
A.E. Eiben, Xiaodong Li, Masoud Mohammadian, Pablo Moscato, Frank
Neumann, Zbigniew Ra$, Markus Wagner, Thomas Weise, Adam Wierzbicki,
and Mengjie Zhang.

And finally, it was a great pleasure to write about a topic that’s been the
central focus of our working lives for so many years, and we hope that readers
enjoy this book as much as we enjoyed writing it. We believe that anyone
in any organization who makes operational, tactical, or strategic decisions—
whether on the factory floor or in the boardroom—will find this book valuable
for understanding the science and technology behind better decisions. Enjoy!

Adelaide, Australia Zbigniew Michalewicz
March 2021 Leonardo Arantes
Matt Michalewicz
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CHAPTER 10
Supply Chain

“Leaders win through logistics. Vision, sure. Strategy, yes.
But when you go to war, you need to have both toilet paper and
bullets at the right place at the right time. In other words,
you must win through superior logistics.”

Tom Peters, business author and speaker

Supply chains are all about “supplying” the items we buy and consume each
day through complex “chains,” which move and process raw materials to make
the final products we see on store shelves. Depending on the industry, a supply
chain could be as straightforward as a few retail shops, warehouses, and trucks,
or as complex as a sprawling network of mine sites and processing plants con-
nected by rail and sea transport. From a higher perspective, however, all these
supply chains are linked in one way or another through an intricate web of
interactions. If we think about any common product—such as a bottle of wine
or family car—we can trace the individual components of those products back
through their respective supply chains, back through the trucks and ships that
brought those products to the liquor store or dealership, back to the factories
where those products were assembled, back through the transport network
that brought those components to the factory, and so on.

In the case of wine, the grapes have to be grown first, before they begin
their multi-month journey through harvesters, trucks, weighbridges, crushers,
and other processing facilities to become the colorful accompaniment at our
dinner table. And when it comes to cars, some components originate at mine
sites, where the iron ore that will eventually become the car’s frame and doors
and hood is extracted from a pit. Each of these steps in the supply chain has its
own challenges and complexities; for example, planning a mine site requires
consideration of what grade of ore is required at what point in time, coupled
with truck and digger availability, workforce rosters, maintenance schedules,
and more—which is just the first step in the process—followed by the sched-
uling of trains that will transport the ore from various mine sites to the port,
where the coordination of stackers and reclaimers happens to ensure that each
ship is loaded on time. And after that, there is more, much more, as the ore
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arrives in another country and is heated by coal (which arrived at the furnace
through a similarly complex supply chain) to become steel, which in turn is
molded into the car’s frame and doors and hood—components that represent
just a handful of the 30,000 parts that make up the average car, each of which
has their own supply chain from raw materials to finished part. On top of this,
the automaker needs to predict consumer demand for its cars across different
countries—a difficult problem in itself—all while the cars are being assembled
and placed on ships for transport to those markets.

At every step, there is complexity, and the more steps we consider together,
the more complex the problem becomes. This inherent complexity makes
supply chain problems particularly well suited for the application of Artificial
Intelligence and Decision Optimization Systems. Given the multi-component
nature of supply chains (as discussed in Chapter 6.10), we'll present each
part separately: First demand planning and inventory in Section 10.1, then
production planning and scheduling in Section 10.2, followed by logis-
tics and distribution in Section 10.3. At the highest level, these are the core
components of a supply chain operation: predicting demand, planning and
scheduling production (whether it be the production of iron ore from a mine
or the assembly of cars in a factory), and then organizing logistics and distri-
bution. Each component represents a complex business problem in itself, and
together, an almost impossible challenge.

10.1 Demand Forecasting and Inventory Optimization

The holy grail of supply chain optimization is predicting what will be sold,
in what quantity, where, and when—with 100% accuracy. An organization
capable of doing that could run the leanest possible supply chain—with
minimal inventory levels—while always satisfying customer demand and never
stocking out. Unfortunately, such prediction accuracy is impossible to achieve,
and for that reason, all organizations must carry some level of inventory to
buffer against unexpected changes in demand.!

Despite the fact that organizations of all shapes and sizes have gorged
themselves on demand planning software over the past few decades, demand
forecasting still remains an unsolved problem within most organizations—
“unsolved” in that the forecast error is still high, leading to stockouts, as
well as excessive inventory levels and obsolescence. “We still carry a lot of

1 Another reason that organizations carry inventory is because the lead times on raw materials
can also vary, so without a buffer of these inputs the manufacturing process can come to a
halt. Such inventory is often classified as raw materials inventory—which could be the car
frame, door, or hood—versus finished goods inventory, which is the finished (i.e. com-
pletely assembled) car itself.
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inventory,” these organizations will confess, “not as much as before, but still a
lot. Unfortunately, its in the wrong place, at the wrong time.” Hence, not only are
working capital and obsolescence costs still high, these organizations routinely
suffer lost sales due to stockouts.

MAX Hardware found itself in precisely this situation. After evaluating
many software systems for demand planning, the company purchased and
implemented a system that best fit their operation from a features, functionality,
and workflow perspective. Being a manufacturer and distributor of hardware
products—such as nuts and bolts, screws, and various types of tools—the
company sold its products through both retail chains and directly to the trade
(i.e. electricians, plumbers, carpenters, etc.). Given MAX Hardware’s exten-
sive products range—in the thousands—along with significant lead times for
certain raw materials and components, the company’s flexibility was limited in
ramping up production when inventory ran low. For this reason, improving
demand forecast accuracy was of paramount importance—especially because
trade customers couldn’t wait for backordered products, so whatever MAX
Hardware stocked out, these customers bought from competitors (sometimes
leading to a permanent change in loyalty).

After the new demand planning system went live, however, it became
apparent that forecasting accuracy was no better for a large number of
products. Using these system-generated forecasts, MAX Hardware was still
producing too much or too little of different product lines, creating excess
inventory of some lines and shortages of others. As for products produced in
the correct aggregate quantity (countrywide), they were frequently sent to the
wrong distribution center and required expedited shipping to another distri-
bution center to fulfill demand in that part of the country. Hence, the forecast
for these products was accurate at the aggregate level, but highly inaccurate at
the granular level of individual states or customer segments.

Because of these forecast accuracy issues, manual overrides became the
norm at MAX Hardware as inventory managers and key account managers
overrode the forecast in an attempt to improve its accuracy. In many cases,
this made the situation worse, and a large amount of time was spent “playing
around with the numbers,” as manage-

ment put it. Eventually, the forecasting A
Decision

function was removed from the system PN
Optimization

altogether, as MAX Hardware reverted
Prediction

to spreadsheets for generating a manual

forecast—which meant that, in effect, the AN
company had returned to the same state o o N

as before the demand planning system
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was implemented (i.e. using spreadsheets, gut feel, and manual processes to
create the forecast). This situation continued for some time until management
decided to take action and began searching for a system that could provide
superior forecasting accuracy. As such, MAX Hardware defined their business
problem and objective as:

Reduce inventory levels and stockouts through more accurate demand forecasting

By going through the process of implementing the failed demand planning
system, MAX Hardware realized that the vast majority of such systems were
based on a standard set of statistical models that were configured in the same
way: Namely, by taking the historical sales data for each product line—like the
one shown below:
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In the graph above, each curve is a statistical model, and each curve fits the
data better than any other curve of its specific type. And so for the same his-
torical data, we have three different predictions generated by three different
models. But by only using internal data and standard statistical models, what
inevitably happens is that the future turns out very differently to what these
models predicted, thereby creating a forecast error of varying magnitude for
different products:

120 T T T T T

exponential

quadratic

%

40 - Data up to t = 40 linear —

used to predict.

Through this experience, MAX Hardware realized that demand forecasting was
a scientific problem of selecting the most appropriate prediction method for
the problem at hand and building a model (as discussed in Chapter 5), rather
than a software problem of selecting the application with the most features and
functionality. The real difficulty lay in predicting the future, which had to be
addressed algorithmically within the selected demand planning system.

Data, information, & knowledge
Like many other manufacturers in the
building materials sector, MAX Hardware

had a substantial amount of internal data, aiecotion
including:

* Historical sales by product by

Problem

customer

* Historical pricing data by product
by customer

* Historical inventory levels by product by week

* Historical forecasts created by inventory managers and by key account
managers for retail chains
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This data was used to provide inventory managers with a variety of reports and
visualizations, including inventory levels against actual sales by product and

time period:

I Oomond [ Stock Vohoo

May-19 An-19 Jul-19 Aug19 Sep-19 Oct-19 Now-19 Dec-19 Jn-20 Fob-20 Mar-20 Ape-20

as well as historical performance on KPIs such as stockouts, customer fill rates,

and inventory days cover:

Performance Analysis

N Fovcat Accurncy JRSRIR teventory Days Cover I Suppie Dulivacy Parformance Cuntomme Duvery Parformance

May19 Jun-19 2419 Avg19 Sep-19 Oat19 Nov-19 Dec-19 Jan-20 Fob-20 Mar20 Aor20

Although these informational reports were plentiful, they didnt provide any
predictive capabilities—only a rear-view mirror look at what happened in the
past. To gain a better feel for future demand, MAX Hardware began experi-
menting with external data (such as building approvals and customer forecast
data) in search of patterns that might repeat in the future. But such efforts were
ad hoc, sporadic, and driven entirely by the analytical capabilities of the staff
that undertook such analysis. For these reasons and others, the business case for
a Decision Optimization System—one that would allow the company to hold
the right inventory, at the right location, at the right time through improved
demand forecasting accuracy—was created and endorsed by MAX Hardware.

Decision Optimization System (prediction, optimization, &
self-learning)

As is the case with many other complex business problems, MAX Hardware’s
business objective to simultaneously reduce inventory levels and stockouts was
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dependent on the accuracy of its predic-
tion model—in this case, the accuracy

of predicting future demand. Although

) Optimization

possible
levels by using an inaccurate forecast (by

holding a larger amount of safety stock
for the most variable product lines and

it was still possible to improve inventory

: : AN
dynamically changing these safety stock

levels throughout the year to account
for seasonality and other demand effects), the largest benefit would accrue

through improved forecast accuracy.

Knowing now that the problem of forecast accuracy was algorithmic in
nature, the new Decision Optimization System had two fundamental dif-
ferences from the first demand planning system: First, it used an ensemble
model that combined statistical models with Al-based methods such as neural
networks and fuzzy system (as discussed in Chapter 5); and second, each model
was fed with both internal and external data to improve accuracy:

Prediction

Statistical models

External Data I

Historical Data

Prediction
Neural Network

External Data

Historical Data

Voting &
Selection

Prediction

External Data

Historical Data

Rough Sets

Prediction

External Data

Historical Dat3

External Data
Historical Data

The ensemble model achieved a substantial increase in forecast accuracy over
both the manual, spreadsheet methods, as well as the statistical models used
by the failed demand planning system. This ensemble model became the pre-
diction component of the Decision Optimization System, providing MAX
Hardware with the most probable view of future demand by product, by dis-
tribution center, by time period, and in many cases, by customer:
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PROMOTIONS PRICI VENTORY BUSINESS PLANNING

ANALYSIS

I story 20192020 JRERI Forecast Histony 20182019 Hatory 2017.2018

Juy Aot Segteron Octobue Nowerr e Oecomon Januwy Feorumy March Apdil May e

Yearly ™ Jul Aug Sep | Oct ‘ Nov [ Dec Jan n Mar ‘ Apr | May Jun

Forecast 2109 1893 1638 1465 1639 978 1503 93 1110 1493 1704

History 2019-2020 1953 1856 1820 1495
History 2018-2019 2489 1817 1982 a1 1590 830 1743 117 1065 1627 1874

History 2017-2018 1856 2139 1753 1363 1492 1095 1307 1148 1010 1463 1636

Once the Decision Optimization System was configured and implemented, it
considered historical sales, customer forecasts, relevant external data, as well as
promotional and pricing information for each product:

COMPLEXICA PROMOTIONS PRICING DEMAND

Decision Cloud ® CORE PRICING PROMOTIONAL PRICING ELASTICITY

Supplier: SKU:

Although the demand forecast was generated by an ensemble model that used
internal and external data, MAX Hardware still had the capability to override
these forecasts:

Adjust Forecast

Enter new value

Adjustment History

Jai Singh 25 July 2020 - 10:00 AM

Hugh Lam 23 July 2020 - 08:00 AM
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These overrides were captured in an audit log, and then analyzed by the
Decision Optimization System to provide feedback on the effectiveness of
each manual intervention (which in most cases were inferior to the system-
generated forecasts). As for new products that lacked sales data, the Decision
Optimization System used the historical sales data of similar products to

estimate future demand:

i ol

The Decision Optimization System also allowed MAX Hardware to under-
stand the trade-off between working capital levels and customer fill rates. This
was done by defining working capital and fill rate targets, which could be set
for all products and customers in aggregate, or broken down into individ-
ual targets for individual products, customers, distribution centers, and time
periods, as shown below:

PROMOTIONS PRICING DEMAND BUSINESS PLANNING

Inventory Replenishment SelectAll  Deselect All

SKU Code | Supplier Nearest Supplier Date | Product Description

Channels with sales | Initial Quantity to Order | Adjustments | Flags | Pallet Qty | Quantity to

-/ 28355 Bird In Hand 117132019 Breathing Space 5 406 +26 1 ) 432

® 247 Bird In Hand 1171122019 Skillogalee 5 34 +19 360
D 25858 Berton Vineyard 1171122019 OMNI NV 750ML 4 314 *46 ) 360
& 120402 Berton Vineyard 1171172019 W/BLASS RED LBL 5 288 <0 L) 288
X 21169 Australian Vintage Limited 1 111222019 ‘ 4 Pines Christmas. | 3 282 I +6 I 288
® 28079 Australian Vintage Limited  11/13/2019 ASAHI SOUKAI 3.5% BTL330ML 4 260 "’ 1 ®) 264
o]

8 Stock Details Branch Details Item Details

TONSWT 102 a 0 a 9 Towl Qty o Ordes: 2
Total Price of Order: $0

2 vic2 436 3 o 3 -5

3 ADL3 739 5 0 5 3 Submit

Once these targets were set, the Decision Optimization System would attempt
to find a Pareto curve of optimized solutions (as discussed in Chapters 2.3
and 6.9) that illustrated the trade-off between inventory levels and customer
fill rates:
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COMPLEXICA PROMOTIONS PRICING DEMAND NVENTORY BUSINESS PLANNING
Decision Cloud ® REPLENISHMEN TIMISATION
° Trade Off Analysis
$£4,000,000
"
Trade-Off 5
$£9,000,000
- Trade-Off 4

$62,000,000 Trade-Off 3

Viorking Capial

o] Trade-Off 2
$61,000,000

$£0,000, c
R25%

Trade-Off 1 Trade-Off 2 Trade-Off 3 Trade-Off 4 Trade-Off S

04.0% 945% 95.0%

Inventory Replenishment Select Al Deselect A

SKU Code | Supplier \ Nearest Supplier Date | Product Description Channels with sales \ Initial Quantity to Order | Adjustments | Flags ‘ Pallet Qty | Quantity to d

This advanced capability for multi-objective optimization allowed MAX
Hardware to implement different inventory policies for different product lines,
customers, distribution centers, and time periods, and was based on evolution-
ary algorithms (discussed in Chapter 6.7).

The reason that evolutionary algorithms were selected for optimization,
is because this Al-based algorithmic method could simultaneously produce
many potential solutions (i.e. a population of solutions)—hence it could
generate a few final solutions at the end of a single run. Of course, these final
solutions had to be substantially different from one another, because if the five
solutions were quite similar (with just minimal differences), the usefulness of
the trade-off results would be modest at the very best. To address this issue,
the evaluation function of the evolutionary algorithm took into account the
“uniqueness” of solutions: “similar” solutions were penalized, so they become
less attractive as candidates for the next generation of solutions. Furthermore,
the algorithm placed a premium on non-dominated solutions>—in other
words, solutions where there was no single solution in the population of solu-
tions better on all objectives (e.g. working capital and customer fill rates).
Because of this evaluation function, the evolutionary algorithm improved the
Pareto curve of solutions from one generation to the next, and the final result
(consisting of several “best” solutions) was presented as a diverse set of possi-
bilities that illustrated the trade-off between working capital and customer fill
rates (as shown above).

And lastly, based upon the system-generated demand forecast and opti-
mized inventory policies, the Decision Optimization System provided MAX
Hardware with product replenishment recommendations that could be

2 See Chapter 6.9 for a full discussion on this topic.
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reviewed/modified/accepted before being converted into production orders
for finished goods, or purchase orders for raw materials:

COMPLEXICA PROMOTIONS PRICING DEMAND OR BUSINESS PLANNING
Decision Cloud ® 7 IMISATION

Select All Deselect All

SKU Code | Supplier Nearest Supplier Date | Product Description Channels with sales | Initial Quantity to Order | Adjustments | Flags | Pallet Qty | Quantity to §

8ird In Hand 11/13/2019 Breathing Space

#® 21147 8ird In Hand 1171112019 skillogalee s 341 +19 1 0 360
D 25858 Berton Vineyard 11112019 OMNI NV 750ML 4 314 +46 1 0 360
& 120402 Berton Vineyard 1171172019 W/BLASS RED LBL H 288 +0 1 . 288
21169 Australian Vintage Limited | 11/12/2019 4 Pines Christmas 3 282 +6 1 0 288

28079 Australian Vintage Limited  11/13/2019 ASAHI SOUKAI 3.5% BTL 330ML 4 260 +4 1 m] 264

=] Stock Details Branch Details Item Details

No | Site Avail SOH | Days Cover | Total On Order | Shipped On Order | Cover Incl. on Order | Cover Incl. on Order, Le; Total Items Selected 0

1 NSW1  -102 -1 0 A 9 Total Qty to Order: 0
Total Price of Order: $0
2 ViIC2 436 3 0 3 -5

3 ADL3 739 S 0 5 3 Submit

The Decision Optimization System implemented by MAX Hardware provided

a number of tangible benefits, including:

* Improved forecast accuracy, which was particularly important for hard-
to-forecast product lines. On average, forecasting accuracy increased
from approximately 64% to 89%, with many products exceeding 95%

* A 18% reduction in finished goods inventory

* A 43% reduction in stockouts, leading to a corresponding increase in
customer fill rates (as measured by Delivery In Full, On Time metrics,
“DIFOT”)

* Less time and effort for inventory planning and replenishment, with
some tasks being reduced from a few days to a few hours

MAX Hardware also realized additional benefits in metrics such as the cash-to-
cash cycle time, stock turns, and customer loyalty, all of which contributed to
the company’s overall profitability and competitiveness.

10.2 Scheduling Optimization for Improved Asset
Utilization, Throughput, and DIFOT

Every factory needs to plan and schedule its production, regardless of whether
it’s assembling cars, bottling wine, producing cardboard boxes, or extracting
iron ore from a mine. These factories can be thought of as “nodes” within a
supply chain, where raw materials and components go in one end and finished
products emerge from the other. Many of these nodes are interconnected,
where the output from one node is an input into the next. For example,
the output from a mine could be iron ore or coal, which represents the raw
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material input into a steel-making factory. And in that steel-making factory,
the finished sheets and slabs of steel become the raw material into the next
manufacturing node, where the steel is formed into car components—and so
on, with each node having its own demand forecasting, production planning,
and scheduling process.

In this supply chain context, the words “planning” and “scheduling” are
often used interchangeably, despite meaning very different things: Planning
refers to what an organization will do, whereas scheduling refers to when an
organization will do it. For this reason, planning is more macro and “higher-
level” (i.e. deciding what products to produce each week or month, depending
on the forecasted demand), while scheduling is more granular and exact. As a
simple example, an airline might plan to provide 100 return flights between
two cities for the month of May (based upon the forecast demand for travel)—
which represents what the airline will do. This planning process is simpler than
scheduling when these 100 round trips should occur: the exact time, crew,
planes, maintenance, and so on. Hence, planning problems are usually easier
to solve and optimize than scheduling problems.?

When it comes to production planning and scheduling within a factory,
the same concepts apply. An automaker would first create a production plan
for building a particular mix and volume of cars (again, based upon the
forecast demand, production capacities, inventory levels at dealerships, as well
as other considerations), and then use this plan to schedule the assembly of
these cars (the exact components, production lines, and timing). Hence, the
planning process is done at a higher, more macro level, whereas scheduling is
granular and involves many complex details, such as the availability of input
components and raw materials, labor constraints, production line availability,
changeover times, maintenance schedules, and more.

In this case study we'll discuss CAST Metals, an organization with eight
foundries spread across different locations, with each foundry operating several
furnaces and casting machines. In a foundry operation, products are produced
by melting metal inside a furnace and then pouring this heated liquid into
a mold. Once the metal has cooled and solidified, the mold is removed to
produce the final product (which could be a metal component for a railway
network, automobile engine, pipe, or any number of other products). Creating
and modifying a quarterly production plan of what products to produce was

3 The predominant difficulty in planning problems lies in accurately predicting what will
happen in the future; once this has been addressed, the planning process is usually straight-
forward. The difficulty in scheduling problems, on the other hand, is finding the schedule
that maximizes or minimizes certain objectives—such as asset utilization or cost—from an
almost infinite number of possible schedules.
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part of CAST Metals sales and operations planning (“S&OP”)* process, in
which confirmed and forecast demand was synchronized with manufactur-
ing capacity and inventory levels. During this regular planning cycle, CAST
Metals balanced production across its foundries by considering manufactur-
ing capabilities and capacities, the location of its customers, transportation
costs, as well as the overall production load and inventory across the network.
Hence, demand forecasting, inventory management, and the global optimiza-
tion of production across CAST Metals’ eight foundries were addressed at the
planning level, and were not a consideration for the scheduling process.
When the monthly production plan was converted into a weekly schedule—
going down to hourly time buckets at the individual machine level—the
objective was to meet customer due dates while simultaneously maximizing
asset utilization and factory throughput. However, converting the higher-level
plan into a detailed schedule was a complicated and difficult undertaking,
requiring CAST Metals to consider many constraints and business rules for
each individual foundry. Some of these constraints represented physical limita-
tions (such as melting times and furnace capacities), while others represented

operational business rules related to:

* Manufacturing some products during day shifts or night shifts

* Not manufacturing some products at the same time because of their
similarity (making these products difficult to sort at the end of a pro-
duction run)

* Operating certain casting machines on particular days (e.g. from
Monday morning to Thursday evening)

* Using certain casting machines for particular products because of efli-
ciency and tooling reasons

In addition to these business rules and constraints, the production schedule
had to coordinate many independent processes, such as the preparation of

cores and molds, pouring of molds, and
the finishing of castings. There were also
Decision
many relationships between various metal
Optimization

grades to consider, as well as the transi- TR

tion time for changing from one metal

grade to another. Because of all these ' momaton Y
complexities, the result was substandard A

performance on metrics such as Delivery

4 Sales and Operations Planning is an integrated planning process for aligning and synchro-
nizing various business functions of an organization.
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In Full, On Time (“DIFOT”) and Overall Equipment Efficiency (“OEE”), as

well as excessive overtime labor due to last-minute schedule changes. Hence,

CAST Metals defined their business problem and objective as:

Simultaneously increase asset utilization, factory throughput, and customer
service levels through optimized production scheduling

To achieve this objective, CAST Metals decided to replace the manual,
spreadsheet-based approach for production scheduling with a Decision
Optimization System capable of:

* Converting production plans into detailed schedules that were opti-
mized for asset utilization, labor costs, and customer service levels

* Dynamically “re-optimizing” the production schedule whenever cir-
cumstances changed (customer orders, machine failures, etc.)

Given the complexity of this business problem (i.e. an astronomical number
of possible solutions, a dynamic environment with frequent changes, and
many problem-specific constraints), Artificial Intelligence algorithms were the

natural choice for optimization.

Data, information, & knowledge g
When creating the monthly production
plan or weekly schedule, CAST Metals

Prediction

had access to a variety of datasets,
including:

* Forecast orders by product

Problem

* Confirmed orders by customer

* Historical sales by product by customer

* Bill of materials for each product

* Product routing for each product for each foundry

* Historical customer service levels in terms of DIFOT metrics

* Historical factory performance levels in terms of asset utilization, main-
tenance schedules, labor costs (especially overtime), and breakdowns

* Historical inventory levels by product by week

* Current inventory levels

* Historical demand forecasts and their accuracy

This data was used to produce daily and weekly reports, such as inventory
levels against actual sales by product, machine downtime, and overdue work
orders, as shown below:



396 The Rise of Artificial Intelligence ...

(V] Inchude All Work Centres
(7] Include Unassigned Work Centres
Start Date: | 24/01/2009
EndDate: | 6/06/2011 |

{Refresn |

Overdus Work Orders

No xork Order Short Rem Description Quantty ) o Assigned g::.-dtd
1025214 18242  [Product 1128 ] 1,500 1,562]  08/07/0900:00  |A07 | 23/07/2009 -~
225214 18242 Product 1128 4,1 ,S62|  08/07/09 00:00 24/07/2009 =
325214 18242 Product 1128 4,1, \ 08/07/09 00:00 25/07/2009
425214 18242 Product 1128 2,746 11,5621 08/07/09 00:00 25/07/2009
525215 18242 Product 1128 1,379, “1,562]  11/07/09 00:00 26/07/2009
6125215 18242 Product 1128 1 1,562 11/07/03 00:00 7 26/07/2009
1325219 18242 Product 1128 2,863 1,562 16/07/03 00:00 7 5/08/2009
1425424 18226 Product 1125 1,262 625/ 23/07/03 00:00 6/08/2003
1525424 18226 Product 1125 3,738 625/ 23/07/05 00:00 6/08/2003

CAST Metals used these reports to balance urgent and overdue orders against
run lengths and changeover times, with the output of this spreadsheet-based
process being a day-by-day, line-by-line production schedule:

Tue ! wed ' Thu X Fri ! Sat X
]

Line 1 hm@iﬁﬁmﬁmiﬁﬁﬁ[ﬁﬁiq
Line: 2 O 1 O
tnes WNIEET — ) —— e
L 4 | — |
Line 5 (N1 I O —.
Line 6 pﬁi:ﬁ-ziﬁ:ﬁzﬁiiimii:i

Mon

Line 1 | Line 2| Line 3 Line 4 | Line 5 | Line 6

No. | Start Time | Company | Part No | Metal | Parts |
1 Mon 06:00 Steel Products, Inc. 7 1001 1,569
2 Mon 12:00 Business Air Jets, Inc. 14 1003 38
3 Mon 16:00 Railway Parts Inc. 16 1009 1,869
4 Mon 22:00 Steel Frames, Inc. 12 1009 186
S Tue 04:00 Truck Parts Inc. 8 1006 2,481
6 Tue 10:00 Business Air Jets, Inc. 11 1004 212
7 Tue 18:00 Household Products, Inc. 15 1003 860
8 Wed 04:00 Railway Parts Inc. 7 1006 3,138
9 Wed 16:00 Railway Parts Inc. 13 1007 132

10 Wed 20:00 Steel Products, Inc. 17 100S 1,868
11 Thu 00:00 Truck Parts Inc. S 1008 279
12 Thu 06:00 Truck Parts Inc. 17 1002 1,868
13 Thu 10:00 Household Products, Inc. 8 1006 4,962
14 Thu 22:00 Steel Products, Inc. 18 1002 735
1S Fri 04:00 Truck Parts Inc. 10 1006 3,138
16 Fri 16:00 Railway Parts Inc. S 1002 465
17 Sat 02:00 Business Air Jets, Inc, 1 1004 1,404
18 Sat 14:00 Railway Parts Inc. 1 1004 702
19 Sat 20:00 Steel Frames, Inc. 13 1007 132
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Besides being labor intensive and time consuming, the scheduling process was
inefhicient for many other reasons, including:

* 'The final schedule didn’t consider many business rules and constraints,
largely because these rules were in people’s heads. Consequently, the
production schedule was usually “un-executable,” in that it omitted or
abstracted certain variables such as maintenance, changeover times, dif-
ferences in the defect rate between various machines, and variations in
production run times. The production schedule was therefore seldom
achieved, and schedule adherence was low.

* 'The production sequence was suboptimal, as no team of human experts
could consider all possible scheduling combinations, which in turn led
to factory performance issues.

* The schedule was static and disconnected from the factory floor, as there
was no data feed from each machine to understand production from a
“scheduled” vs. “actual” point of view. This meant that re-scheduling
was a slow and painful process of first realizing that something had
happened—such as machine failure, high defective rate, or some other
event—followed by updating the spreadsheet-based schedule, before
finally printing a new version and pushing it down to the factory floor
(by which time it was again out of sync and not reflective of what was

actually happening).

The business case for configuring and deploying a Decision Optimization
System was based on achieving higher production volumes through each
foundry (leading to greater revenue per site) and fewer late orders (leading to
fewer financial penalties, greater customer satisfaction, and greater customer
loyalty). Consideration was also given to potential future phases, where the
Decision Optimization System could be extended to production planning
and demand forecasting, thereby allowing CAST Metals to improve demand
forecast accuracy and reduce inventory (as discussed in the previous case
study), as well as globally optimize across all eight foundries to realize further
efficiency gains.

Decision Optimization System
(prediction, optimization, &
self-learning)

) Optimization

To enable optimized scheduling across

its eight foundries, CAST Metals imple- e

mented a Decision Optimization System  (r——
based on Artificial Intelligence methods
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for optimization. When converting the production plan into an executable
schedule for each foundry, the Decision Optimization System considered the
current inventory level of each product (as measured in days cover), as well
as the designation of each order—namely, whether it was “make to stock” for
replenishing inventory or “make to order” for a specific customer:

Item Details
[] Show Oniy Items With Order Qty > 0[] Show Only Traded Items "] Show Only Container Items
Current
Item o Days Benchmark Cover Incl.  Predicted Qy Las
ca 56 G Code Rem Description ::;Eb‘e Cover  Days Cover On Order on Order Daly Demand To Order Sul
'] |023s62 12] 1 12| o] 10 1.167 90| 24
| ] |023569 [SKU 4523 24 20, 12| 0 20, 0 0| 27
| ] 1023570 [SKU 4535 18 20 12| 0/ 20 0] 0] 2
] 023571 ]SKU 4535 24 20 12 0/ 20, 0 0| 2
|| [023572 [SKU 4537 30 20, 12 0 20, 0 o 2|1
|| 1023560 [SKU 4557 0 20 12| 0 20 0] 6| 2(=
|| 023561 EKU 4558 16 20, 12 0 20, 0 0| 2
|| [02357S [SKU 4590 12| lq 12 0 10 1.167 6| 2
[} [023574 [SKU 4591 20 20, 12 0 20, 0 0 2
|| [023573 [SKU 4592 12 1 12| 0 10 1.167 6| 2
7] |0235% [sku 4268 18 20| 12| [} 20 0 o 2
| |023597 [sku 4269 12 20| 12 0| 20 0 o 2
=1 lanacae  levitanan FAN— - al 2n aien AT
< m | »
| Flags | Groups | Item Detais | Branch Detals Status
Name Vale Total Items Selected: 0
Active? true - - N
Order By Uk Faise = Total Quantity To Order: 0
Replenish On Sales Order? false K
Repacked? False Select Delivery Address
iraded Rem? fakse ADELAIDE SALES &DISTRIB.  4... v |
Cut Off Time 12:00 AM L 4
Order Days
Delvery Lead Time 0
Initial Reorder Qty 6
ReOrder Qty 3 Submk: =)
Contaner tam? alce =

These inventory levels and designations impacted the prioritization of orders,
with the Decision Optimization System placing more emphasis on orders
where the product was being produced for a specific customer and no inven-
tory existed for buffering the due date.

Another important consideration was the interplay between furnaces and
casting machines, which represented the core scheduling issue. The primary
objective was to optimize the distribution of production orders over some
period of time in a way that maximized furnace utilization and machine
throughput. Because the furnaces and machines worked together in the pro-
duction process (first melting, then casting), the maximization of furnace
utilization and production-line throughput had to be considered jointly.
Secondary objectives included the maximization of DIFOT metrics and mini-
mization of labor costs when optimizing the production schedule.

To generate a detailed schedule that was optimized (as well as realistic and
executable), the Decision Optimization System held a variety of foundry- and
machine-specific data that was referenced by the optimization model, such as
changeover times between various metal grades:
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Within the optimization model itself, the approach for handling constraints
was based on decoders, which separated between objectives and constraints (as
discussed in Chapter 6.8). Using this approach, the optimization model used
the constraints to “guide” the optimization process toward feasible schedules of
higher quality. This constraint-handling approach also allowed for easy modifi-

cation of business rules related to labor availability:

General Info
Person 1 | @ Active
Timetable
Weekly Timetable - General Schedule Deviations From the Weekly Timetable - Manual Overwrite

No Day of Week Enabled From To No Date Start Time Start Date End Time End Available
1jMonday @) 08:00 | 18:00 1 | | | I
2Tuesday V] 08:00 18:00
3Wednesday V] 08:00 18:00
4Thursday ] 08:00 | 18:00
5Friday @ 08:00 | 18:00
6/Saturday @] 08:00 | 18:00
7|Sunday @] 08:00 | 18:00
8| X
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and machine availability:

Iysis | Reporting and visualisation | Work Orders | Exception Report| Configuration |

Production Line "AT1"
General Info
No |1 Name | AT1 Efficiency Rate 80 % Active [V]
Compatible Production Lines
Tools that fit "AT1" may also be used on the following production lines:
Compatible Prod. Line Non-compatible Prod. Line
—— 4 - AT4
Remove -> |
Timetable
Weekly Timetable - General Schedule Deviations From the Weekly Timetable - Manual Overwrite
No Day of Week Enabled From To No Date Start Time Start Date End Time End Available
1/Monday @) 06:00 | 18:00 1| 200122009 | 09:00 | 14fo1/2009 | 0600 | N X
2|Tuesday ] 2 m
3'Wednesday V] 06:00 | 06:00
4 Thursday 06:00 | 06:00
S Friday & 06:00 | 06:00
6/saturday B
7[Sunday 2] 18:00 06:00
8 X

Both labor and machine capacities were treated as soft constraints, allowing the
Decision Optimization System to flex production up and down as required.
By modifying these constraints (or changing the capacity of the foundry in a
more fundamental manner—for example, by adding another casting machine
within the Decision Optimization System), CAST Metals could ask “what-if”
questions and create alternate schedules, as shown below:

[ scheduling | Long-term planning | What-if analysis||
What-¥ planning
Select scenario: 'Exﬁamfunﬂ{ewtdem&tdofﬂedm v [ New Scenario... J Lm«mmwwm... ] [ Save J

9 and visuaksation | Work Orders | Report | Configuration|

Changes from production environment:
Impact of changes by Key Performance Indicators
AT3 ine: Add shift Saturday 08:00 to 14:00 (recurring) Viork orders processed:  +12  Running costs: + $82,000
AT3 Ine: Reduce efficiency for Saturday 08:00-14:00 shift to 70%. Domestic orders late: -4 Labour costs: +$128,000
User comment: Adding an extra shift, but will be under-staffed so estimating Export orders late: -7
lower run-rate. Trying to stop delays to export orders. Production efficiency: = et costs 910,000
Comparison
Production efficiency v | Layo: @ Side-by-side () Combined +/-
Production configuration What-if scenario
Line capacity utilisation Line capacity utilisation
100% 100%

80%
60%
40%
20%

0%

AT1 AT2 AT3 AT4 AS1 AS2 A06 AC1 ABl
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CAST Metals used this functionality to analyze a variety of “what-if” scenar-
ios, including:

* Examining the effect of moving a production order forward or back, or
from one machine to another

* Splitting large production orders into smaller work orders

* Examining the effect of constraining certain orders so they couldn’t run
in parallel

* Examining the effect of changes to the production calendar, furnaces,
and production lines.

The most important output of the Decision Optimization System, however,
was the production schedule itself. To generate feasible schedules right from
the start of the optimization run, the system used a combination of evo-
lutionary algorithms and simulated annealing (plus a decoder responsible
for generating near-feasible solutions). Although the quality of the system-
generated schedule improved as the optimization run progressed, CAST
Metals could stop the run at any point and use the best available schedule
rather than waiting to the end. This allowed for flexible usage and provided
CAST Metals with ultimate control over the optimization process. The screen
below shows an optimized schedule for a particular week, where each bar
represents a production order:

[ Sthedulng] Long-tem pl | what-# analysis | Reparting | Work Orders | [ Cock |
Optimisation
19/03/06 20j03j06 21403106 22j03j05 23103106 24103106 25/03j08
Sun Mon Tue Wed Thy Fri Sot

AT3(@.6%) | [ - S—

A4 (26.2%) |}

Ast (07.1%) _‘ﬂ_—.-.-l y—-am-.u-ﬂ_ - ——J
As2(06.0%) | . | ——

Unassigned tems.

| DR w—, y , m— (] p— 5 8] 2t g 2 et g | 50 B 8 1 se—)

N S sy e 5 0 x gy | R —— — gy = = 1

g in Progress
L[ m »
View:  © WorkOrders () Optimisation  (*) Akernative plan 9,000 Scluticas Inspacted.
Work Orders [ 3% ) Work Order detals
" Information 1

USES) F— — | woc | swo | | : = I | ST

The details of each order could also be viewed by clicking on any bar, or by
selecting the order from the items list:
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Order Rees
Ovder Pt Bue Ecworks  Lesd  Earbest Producten Oulay Cae Patern MM Tima
™ o Cumcnar Code P M grgy [Schedie fordured (o Tme 2atdwe  OedTeme hour OB MUk cq BFm. (hem)
16007393 Pancrol Australa 7 Adawroe Plste Ductle  |Dayoghe|  4,000| 2212/2008 | 7] 120010 06:00 | e6epxa | 1es] 3,260 60S| 100.0%| 00:38 | .
200736 OneSeel TrakeLek 199 Lock n Shedkder Dotk [Dayifoght | €0,000| 22/122005 0 12001107 06:38 M | 2128 SLO72 379 100.0%) 0%t |
3007006 PANDROL UK LIMITED Fastdp Ducthe | Dayftoght R,768| 1011200 0 12)01/09 14:43 2765 2,712 R,5M) 565 100.0%] 10:02
4 Pancrol Ioz () 7 Shoukder Safelok 111 Ducthe 18,600| 12/0172007 0 13}01/05 01:00 18 45 15,282 1,199 100.0%| 02:% | =
A v 00
_ 6 Pancrol Australa ‘Shoukder Ductle Daytoght | 26,880 16/01/2009 7| 130109 10:00 | 101 1,715 27,440, 271 100.0%]| 08:21 |
ercrol hustrebe Ducthe. Dayifooft | 26,890 22/12/2008 7 1301091621 | 706, 1L715] 27,4%0  271) 100.0%] 08:21 |
3 UK UMITED dp Dayilhk | 246,888 22/12/2005 ) 1301109 22:42 554 4630 74,00 1,232/ 100.0%| 16113 |
SCO0TY Pancrol Australa 119 Spacer :: Ductle | Dayiaght | 13,550 22/12/2008 of 1301090600 | 2304 | 01| 14,448] 304 100.0%| 01:12 |
10/CC07440  PANDROL LUK LIMITED Fastdo Ducths | Dayitofe | 246,883 22/12/205 0 13091795 G051 SaMas |a466] 17,5%) 1,255 100.0%) 05:08 |
11/CC07440 PANDROL UK LIMITED Factdp Ducths — [DayMaght | 246,888 22/12/2008 0 (1301709 07:12 SE0MS | 10,600 127,200 1,256 100.0%| 37:08
12007433 PANDROL UK LIMITED 1 Fe 95,290 261212008 o] 1301/09 1455 %81 6,%6] 102,320 1,101] 99.0%| 22:% |
13/C007390 _ Pancrol Australa Shoukder Ducthy  |DayMeght | 20,992| 21/01/2007 7| [1401/920:20 | 148 | 1,367| 21,872 221| 100.0%/ 05:03 |
4 33 PANDROL LY LINITED 1_F Ductle 710] 19/12/2008 o] TSO103 1335 | 666 48620 72,792|  1,101] 100.0%| 17:03 |
15CC07350 _ Pancrol Austraba Shoukdie Ducts Dayftoght | 20,992| 9/01/2009 7 1150109 01:24 05MKS | 1,275]  20,400]  221| 100.0%] 04:43 |
16/C007426 Penciol Australa (2569 Festdp —_Ductle  [Dayeght | 12,000/ 110172009 | 0] ISP 06:07 | 90MS | 74| 9,168] 89| 100.0%| 02:56 |
17/C007440  PANDROL LY LIMITED Festdp Ducths Dayiloht | 240,000 14/01/2053 0 15001109 05:03 62095 | 11,971 143,652 1,256] 100.0%]| 41:6 |
18 PANDROL UK LIMITED Fastdp Ducths Dayfohk | 240,000 14/01/2009 0) 6001109 06:39 ) 6,38 101,248 1,232] 100.0%| 22:10 |
19 150 PANDROL LK LIMITED fezdo | Dayitoght ,536| 22/12/2008 [ 701703 04:45 618 487, 7,72 1,110] 100.2%] 01:46 |
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The Decision Optimization System also received a live data feed from each
machine, allowing it to compare actual production against scheduled produc-
tion in real time. Whenever the situation reached a point where the schedule
was no longer feasible, the Decision Optimization System would flag that
re-optimization was required based upon the current state of production in
the foundry—in other words, that the current production schedule would no
longer be met, and that re-optimization was required to re-align future pro-
duction with the current reality on the factory floor.

This streaming machine data allowed for a real-time view into each foundry,
providing CAST Metals with not only a “scheduled” versus “actual” perspec-
tive, but also an ability to dynamically re-optimize production whenever
the unexpected occurred (which unfortunately was often). During this re-
optimization process, if the Decision Optimization System ran out of capacity
in the foundry to process all orders with hard due dates, it would flag these
orders as “unassigned items,” as shown below:

Optimisation | Work Orders Plan C¢ | . I Reports
=T
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AL -
An ] 1/ | 1) 1 1 | [N [ () ] ] ]|
Atz N ] SO A 0 00 000 )01 L S
R | T THTT S | ] IS TRTiN | ] [ | 111 111 W) 11 ITT0T ] [
ATH IR 0L 00 e e m e
Unassignad ltems |
uil | — ] L )] ] 1
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1. L

The Decision Optimization System also provided additional reporting on
various utilization ratios, throughputs, and other KPIs in both graphical and
numerical form. Such reporting was also displayed within the scheduling
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system itself, as shown below, allowing CAST Metals to evaluate the perfor-
mance of each production schedule:

Work Orders

Show from Equipment

2020
Week49 [ AS1 X AS2 X AT2 X | X | v

Tuesday 02 Jun 2020

Q @ Total line utilisation this week: 58%

Resources

Lines (A100) Mon -
Unassigned
AS1 35% utilised

AS2 56% utilised

AT2 82% utilised -

From the very start of the project, CAST Metals had a clear view of the KPIs
it wanted to improve, which provided a baseline and benchmark for validating
the performance of the Decision Optimization System. Also, given the scale of
CAST Metals’ manufacturing footprint, management knew that any improve-
ment in these metrics would translate to a direct and significant improvement
in financial performance of the entire business. The realization of these benefits,
however, was dependent on CAST Metals successfully navigating two change
management challenges:

* First, the spreadsheets that CAST Metals had built up over the years had
to be replaced by the Decision Optimization System, which was a chal-
lenge in itself within each foundry. “But I've been using that spreadsheet
for years,” the production schedulers would complain. “No system can
capture everything I've put into that spreadsheet!”

* And secondly, during the user acceptance testing (“UAT”) phase of the
project, CAST Metals encountered further resistance from end users
because the Decision Optimization System was recommending sched-

ules that “didn’t look right.”

On this second point, CAST Metal realized that “optimization projects”
were very different from “automation projects,” and thus required more sig-
nificant change management. If CAST Metals had configured the Decision
Optimization System to exactly replicate what end users did and generate
schedules that “looked right” to everyone, then the only value of such a system
would have been the time saved in generating these schedules. This would
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have become an automation project, because CAST Metals would be auto-
mating the scheduling process with the end result being exactly the same (only
faster). This wasnt the outcome CAST Metals was seeking, so the Decision
Optimization System wasn't configured to replicate what end users did, but
rather, to generate optimized schedules that could improve various KPIs (and
so by definition, these schedules had to be different to those being generated by
end users up to that point). The only way the Decision Optimization System
could create value was by recommending a different decision that led to a dif-
ferent result—in the case of CAST Metals, a different production schedule that
led to improved asset utilization, throughput, and customer service levels). And
because the system was recommending something different to what had been
typically done in the past, change management was more challenging—“Hey!
That doesn’t look right to me,” the production schedulers would say. “I would
have done it differently.”

The first change management challenge was addressed through exten-
sive user training on the new Decision Optimization System, whereas the
second challenge was addressed by educating end users on why the system was
making certain recommendations. In addition to this education, the Decision
Optimization System provided an explanation in natural language as to why
a certain schedule or scheduling decision was optimal (i.e. “explainable Al,” as
discussed in Chapter 6.9). CAST Metals was able to successfully navigate these
change management issues in large part because of strong executive sponsor-
ship and leadership (which Chapter 11.3 explores in greater detail). Once the
system was fully adopted, CAST Metals began executing the new schedules
and realized an immediate improvement in manufacturing performance. Each
foundry experienced a jump in DIFOT and asset utilization metrics, as well as
reduced overtime labor requirements. The improvement within each foundry
varied according to the capability of the production scheduler and the sophis-
tication of their spreadsheets. In other words, the Decision Optimization
System outperformed very capable staff with very sophisticated spreadsheets,
but the outperformance was modest; as for average staff with basic spread-
sheets, the improvement was pronounced.

And lastly, not only did CAST Metals know what was happening within
each foundry in real time, but the company could now dynamically re-optimize
and re-align the forward schedule with the production realities at each site,
thereby running a continuously optimal manufacturing process.

10.3 Logistics and Distribution Optimization

Logistics is the “connector” of a supply “chain,” involving modes of transport
(such as trucks, trains, and ships), as well as storage locations. Many logistics
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and distribution problems are “multi-nodal,” in the sense that one truck needs
to make many deliveries or stops (like the traveling salesperson problem in
Chapter 2.1, which is representative of typical routing or journey planning
problems). In multi-nodal problems, the optimization objective is to find the
route that minimizes travel time and other cost metrics, while satisfying a
number of hard and soft constraints (such a delivery times or slots). From that
perspective, such problems are “one dimensional” and rarely encompass any
prediction component other than a demand forecast used for load planning
purposes.

Rather than concentrating on a standard logistics operation, this case study
will explore a node-to-node distribution problem where the complexity arises
not from the optimization challenge of finding the best route, but from the
number of factors that impact the distribution plan (and which need to be
considered during the optimization process, such as price changes, inventory
levels, seasonality, and more), and the significant prediction problem that
underpins the entire optimization result.

With this in mind, the case-study presented in this section is about GMAC,
a car financing organization in the United States that leases around one million
cars each year to consumers, organizations, and rental agencies.” When a car
lease agreement expires—which could be from one to five years—the car is
either returned to GMAC or purchased by the leasee (in either case, these cars
are called offlease cars). GMAC doesn’t need to worry about the purchased off-
lease cars, but it needs to sell the returned off-lease cars at one of many auction
sites located across the United States. Each of these returned cars is different in
its make, model, body style, trim, color, year, mileage, and damage level, and
the overall number of cars leased each year translates into approximately 5,000
returned off-lease cars each day. The following figure illustrates a particular
day, where green circles represent the returned off-lease cars and yellow circles
represent the 50 auction sites at which GMAC sells its cars:

5 'This case study is also covered in the article by Michalewicz, Z., Schmidt, M.,
Michalewicz, M., and Chiriac, C., called A Decision-Support System based on Compurational
Intelligence: A Case Study, IEEE Intelligent Systems, Vol. 20, No. 4, July—August 2005,
pp- 44-9, which can be downloaded from: https://www.complexica.com/hubfs/case%20
studies/Case_Study_An_Intelligent_Decision_Support_System.pdf.
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The larger the green circle, the more cars were returned at that particular
location, with the sizes and locations of these circles varying from one day
to the next (as different people and organizations return their cars at differ-
ent locations). The yellow circles, on the other hand, represent the designated
50 auction sites where the returned off-lease cars are sold. The locations of
these auction sites are fixed.®

GMAC’s task was to distribute the daily intake of approximately 5,000
cars to the 50 designated auction sites; in other words, to assign an auction
site to each particular off-lease car. For example, if the first car is located at a
dealership in Northern California, GMAC would consult some reports’ on
what the average sale price for that particular car is at each auction site (after
adjusting for mileage, trim, damage level, etc.), and then ship the car to the
auction site with the highest average sale price. Of course, GMAC also needed
to estimate the transportation cost to each auction site (the longer the distance,
the higher the cost, and longer transportation times resulted in higher depre-
ciation costs and risks). Using this method, GMAC’s decision for the first car
could be visualized in the following way:

6 Although the locations of the 50 auction sites are fixed, GMAC may, from time to time,
change the auctions it does business with by dropping some sites and adding new ones
(thereby changing the location of the 50 yellow circles). This may happen if cars are rou-
tinely damaged at some sites, auction fees go up, or some other reason. However, these
decisions raise several additional questions, such as: How do we evaluate the monetary impact
of dropping some sites and adding others? and Can we increase profits by replacing some auction
sites with others? We will address these important questions later in this section.

7 Many reports are available for estimating the auction price of cars, including Black Book,
Kelley Blue Book, the Manheim Market Report, and others.



The Rise of Artificial Intelligence ... 407

Y

_

o

~\

with the blue line representing the
decision to ship the car from Northern
California (green circle) to an auction site

in Idaho (yellow circle). GMAC would
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Although straightforward, this approach A

then repeat this process for each car.

for distributing off-lease cars didn’t work
very well, and led to a situation when
GMAC didn't capture the full value of each off-lease car. Because the entire
process was based on manual analysis and individual, car-by-car decisions, any
small mistake that resulted in a net reduction of “only” $50 per car, would cost
GMAC $250,000 in a single day!

As such, GMAC defined their business problem and objective as:

Maximize the aggregate resale value of all returned off-lease cars by optimizing
the logistics and distribution to individual auction sites

This was a difficult business problem to solve and objective to realize, because
of the following reasons:®

1. Number of possible solutions. There were 50 possible solutions for each
individual car, as GMAC can ship a car to any of the 50 auction sites;
for two cars, there were 2,500 possible solutions (50 x 50); for three
cars, 125,000 possible solutions (50 x 50 x 50), and so on. For 5,000

8 Recall our overview of complex business problems in Chapter 2, where we discussed the
astronomical number of possible solutions, dynamic environments, and problem-specific
constraints—all of which are present in this problem.
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cars, however, there were approximately 505000 possible solutions
(50 multiplied by itself 5,000 times)! This was an overwhelming number
(1 followed by 8,494 zeros) and no supercomputer could evaluate all
these combinations in a billion human lifetimes. Nevertheless, GMAC
had to make daily decisions for these cars, irrespective of how complex
the problem was or the number of possible solutions.

Transportation costs. When GMAC shipped an entire truckload of cars
from one location to another, it would realize a better price per car
than when it shipped only one car (or a few cars), thereby lowering the
overall logistics cost. This occurred because the cost of transport was
primarily tied to individual trucks and drivers, with the number of cars
on each truck being of secondary importance. Hence, the relationship
between transportation cost and number of transported cars looked
similar to the model presented towards the end of Chapter 6.1. Given
this model, the cost for sending a single car from one location to another
was $250, but the cost of sending two cars was $300 (reducing the cost
per individual car to $150), with each additional car being $50. If a
truck could hold 10 cars, then the transportation cost of a fully loaded
truck was $700, or just $70 per car. But if GMAC needed to transport
11 cars, then a “jump” occurred in cost with $700 for the 10 cars on the
first truck, and $250 for the single car on the second truck (for a total
of $950).

Volume effect. Although GMAC wanted to send each car to the auction
site where the highest price could be realized, sending too many cars of
same color, make, and mileage to the same auction site would trigger
the volume effect. For example, if GMAC sent 45 white Chevrolet
Camaros to the same auction site (which might have all been returned
from a rental agency on the same day), then these cars were likely to
sell for the minimum opening price, because with 45 identical cars for
sale, there wouldn’t be enough buyers to bid the price up on each car
(meaning there was a limit to how much supply could be absorbed
by each site). On the other hand, if GMAC sent only five Chevrolet
Camaros to the same auction site, then these five cars would fetch a
higher price because the same number of buyers would be bidding on
a smaller number of cars. To illustrate this point, the volume effect for a
particular car at a particular auction site might be:
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Volume Effect lllustration
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This graph illustrates the volume effect phenomenon, where GMAC
could realize more money per car by selling fewer similar cars. In this
example, the current average sale price for a particular car at a partic-
ular auction site might be approximately $10,400, and GMAC could
realize this price by shipping up to seven cars to this location. However, if
GMAC shipped 30 similar cars, then the average sale price per car would
drop to $9,450. Note that the term “similar” could mean more than
just the same make, model, or color. For example, many white compact
cars of different makes and models often competed for the same buyers,
thereby reducing the average sale price per car. Consequently, due to the
volume effect, it wasn’t effective for GMAC to consider one car at a time.

4. Price depreciation and inventory holding costs. To further complicate
matters, every auction site had a set day for selling cars (e.g. every
second Friday at 10 am). Because of this, if GMAC shipped 100 cars
to an auction site and the delivery arrived one or two days after the
auction day, then these cars would sit until the next sale day, incur-
ring depreciation and holding costs. Because of this, GMAC needed to
check the exact sale day and inventory levels across all 50 auction sites
before making any new distribution decisions.

5. Price changes. Used car prices change over time, and these changes
may be slow and subtle (over many years as consumer preferences
change), sudden and dramatic (as was the case in March 2020 when
the COVID-19 panic set in), or region specific (e.g. convertible cars
become unpopular in northern states during the winter months, and
consequently, they fetch a lower price—which is part of the “seasonality
effect”). GMAC also had to deal with next year’s models entering the
market during August and September, causing older models to drop
sharply in price (also part of the seasonality effect). During this time
of year it was better to ship cars nearby and sell them quickly, rather
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than shipping them longer distances to more lucrative auction sites.
Additionally, new body style models are introduced every few years,
causing an even bigger drop in price for the older body style.

Coming up with the daily decision of where to send the returned off-lease cars
wasn't easy, as the decision needed to consider the above factors.

Furthermore, the process of transporting a car to a specific auction site
could take up to two weeks, as the truck would have to drive to the pick-up
location, load the car, pick up some additional cars (possibly somewhere close
by), and then finally deliver the cars to the designated auction. Because of
this, GMAC had to consider the sale price for each car a couple of weeks
ahead of time. For example, for a car located in Jacksonville, Florida, GMAC
might consider sending this car to an auction site in Georgia, Pennsylvania, or
California. The price prediction for these three auction sites would be differ-
ent, because GMAC would be predicting the sale price five days into the future
for the Georgia auction site, ten days into the future for the Pennsylvania
auction site, and fifteen days into the future for the California auction site.
The differences in time were due to the transportation distance. However, to
predict these prices, GMAC needed to consider the seasonality effect, price
depreciation, volume effect, and inventory levels. In making the decision of
Georgia vs. Pennsylvania vs. California, GMAC would also need to weigh the
possibility of a better price in California against the higher transportation cost,
higher depreciation, and higher overall risk.

These challenges were ideally suited for Al-based algorithms and the imple-
mentation of a Decision Optimization System, which would rely on advanced
prediction, optimization, and self-learning capabilities to improve GMAC
distribution decisions.

Data, information, & knowledge
GMAC maintained a historical collec- °e°i=i°"
tion of transactional sales data that could

Prediction

be visualized as a two-dimensional table
representing off-lease cars sold at auction.
One dimension of the table represented

the number of records (cars), and the
other dimension represented the charac-
teristics of each car (e.g. VIN,’ make, model, mileage, etc.):

9 VIN is an acronym for “Vehicle Identification Number,” which is a string of 17 digits and
Y & &
letters that contains considerable information about a specific vehicle, (including country of
origin, manufacturer, and model year).
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This historical sales data contained the VIN, postal code of the auction site
(ZIP), transaction date, and the sale price of each car:'°

VIN 7IP Date Price
39WWK93309K]J33012 28262 2.11.2004 $12,035
UDJ2293M99DL0K220 30334 2.11.2004 $15,600
4D09WJD92JE93H990 30334 2.11.2004 $10,590
KD37D92]JF83NF8822 90012 3.11.2004 $9,265
NKI2389DD974F2235 28262 3.11.2004 $13,450
K29DH38FHW02HD923 48243 3.11.2004 $13,955
MDK293HFDWH299305 90012 4.11.2004 $12,495
28DN39FNDJW2N0024 90012 4.11.2004 $11,925
29H93NFI3HJF93F04 48243 4.11.2004 $11,396
ND920ENF1NAD02834 48243 5.11.2004 $9,835
D39DJ39EHQ8HH9335 28262 5.11.2004 $8,965
02UFIMF03JF9SH935 90012 5.11.2004 $13,960
D932NF93HG9057362 48243 5.11.2004 $8,830
00FS8EB3IDNB293758 48243 8.11.2004 $7,920
IE038THJ203TH0234 28262 8.11.2004 $19,250
39FH324MV092HGM39 48243 8.11.2004 $22,640
F92N9F389FH 120458 90012 8.11.2004 $13,580
F9485]G03H25495]5 30334 9.11.2004 $16,970
08GN94HJH03]49327 30334 9.11.2004 $14,320
F04JH402KG4509G45 48243 9.11.2004 $9,110

GMAC also possessed data for individual auction sites (e.g. the average
number of participating auctioneers during different times of the year) and
external data such as historical weather conditions at different auction sites
during different sale days, historical petrol prices, color preferences in differ-
ent areas of the United States, and so on. GMAC used this data to generate
a variety of reports for the price difference between auction sites for the same
off-lease car on attributes such as color, volume of cars sold at each auction site,
number of auctioneers at different seasons at different auction sites, and so on.
The following graph illustrates one such report: The price difference between
auction sites for one particular make (Pontiac) and model (Grand Prix) with
an odometer reading between 20,000 and 40,000 miles:

10 We could easily obtain the characteristics of each car by merging it with the previous table.
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Make: Portiac/Model: Grand Pris/Mileage: 20,000 - 40,000/ Year: 2001/No Accident Record
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GMAC also studied the volume effect at different auction sites for various
types of cars, and this knowledge was presented via graphs and other reports,
like the one shown below (which shows the sale price of a Pontiac Grand Prix
sold with a number of similar cars at the same auction site, with the different
colors representing different odometer ranges—in this example, yellow circles
correspond to the lowest odometer range of 0 to 10,000 miles:

Volume vs Price
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Nonetheless, all this data, information, and knowledge were of limited assis-
tance in helping GMAC make the best daily distribution decision, because
even if GMAC had “perfect knowledge” and could accurately predict the price
of any car at any auction site for any day, they still wouldn’t know how to
optimally distribute 5,000 cars because of all the complexities of this problem,
such as logistics, price depreciation, inventory levels, volume effect, and so on.
The number of possible distributions was simply too large to be evaluated in
any reasonable amount of time, which drove the business case for an Al-based
Decision Optimization System capable of increasing the aggregate resale value
of returned off-lease cars.
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Decision Optimization System
(prediction, optimization,
& self-learning)

) Optimization

tion problem, the Decision Optimization

System had to consider the character-
istics of each car, characteristics of each y— .\
auction site, transportation costs, volume

effects, countrywide inventory (as well as

For this particular logistics and distribu-

cars in transit to various auction sites), price depreciation curves, and market-
driven changes in price.

Before the predictive model was built, the data went through a data
preparation process that included variable transformation and variable com-
position, data reduction and normalization, and the generation of missing
values (as discussed in Chapter 4.2; also, for more information on this
process, please watch the supplementary video at: www.Complexica.com/

RiseofAl/Chapter4). GMAC also augmented its internal data with Black

Book data (which provided regional sale prices, with each region containing

several states and more than a dozen auction sites) and the Manheim Market
Report (which reported on the average sale price of all cars sold at auctions
owned by Manheim). The resulting prediction model was an ensemble based
on decision trees (as discussed in Chapter 5.1) that generated sale price pre-
dictions in the following sequence of steps:

1. Base price. A predicted “base price” was generated based on the car’s
make, model, body style, and year.

2. ZIP-based make/model adjustment. Because some makes/models sold
for a premium or discount in certain regions, the prediction model
adjusted the base price for these specific makes/models in certain regions
(e.g. Chevrolet Corvettes might sell for a $300 premium in Florida and
California, and a $600 discount in Montana and Idaho).

3. Car group/color adjustment. Because some car groups/colors sold
for a premium or discount irrespective of the region, the prediction
model adjusted the base price for these specific car groups and colors
(e.g. yellow Chevrolet Corvettes might sell for a $500 premium, while
green ones for a $1,000 discount).

4. Mileage adjustment. The prediction model adjusted the base price for
mileage and model-year-age, which was the age of a car according to its
model year (i.e. when the 2005 Chevrolet Corvette became available in
August 2004—which underwent a complete body style change—the
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model-year-age of the 2004 Chevrolet Corvette became 1, as that model
year was only one year old).

5. Depreciation adjustment. The prediction model adjusted the base price
for daily depreciation, as calculated from the car’s return date to its
predicted sale day. Because the daily depreciation rate was higher in
the summer months (preceding the introduction of new models), the
depreciation rate increased from June onwards, reached its highest value
in August, and then decreased to lower than average values for October,
November, and December.

6. Seasonality adjustment. Because some makes/models sold for a
premium or discount in certain regions at different times of the year,
the prediction model adjusted the base price for these specific makes/
models during certain seasons (e.g. convertible Chevrolet Corvettes
may sell for a $1,800 discount in the northern states during the winter
months).

7. UVC adjustment. The Universal Vehicle Code (UVC) component
provided a more detailed car specification than the VIN, and in cases
where the UVC was available, the prediction model adjusted the base
price for additional options (e.g. the UVC might reveal that a specific
Chevrolet Camaro is equipped with an upgraded suspension package).

For an average daily intake of off-lease cars, the ensemble model would predict
each car’s final auction price. However, if GMAC received a large number of
similar cars on a particular day, then the predicted auction prices for these cars
were adjusted further to account for the volume effect. For more informa-
tion on the predictive model used by GMAC for this particular distribution
problem, please watch the supplementary video at: www.Complexica.com/
RiseofAl/Chapter5.

The Decision Optimization System also provided GMAC with the ability

to add, modify, or delete various constraints and business rules. Constraints

that were applied to all auction sites were regarded as global constraints, and
an example of this was the “maximal transportation distance” constraint which
limited the transportation distance of all cars—as shown in the screen below:
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GMAC could also implement a large variety of local, auction-specific con-

straints within the Decision Optimization System, such as:

Mileage constraints: which defined the upper and lower mileage of cars
that could be shipped to a specific auction site. An example of this con-
straint would be “only ship cars that have between 30,000 and 70,000
miles to the ADESA Atlanta auction site.”

Model year constraints: which specified a range of model years that could
be sent to a specific auction site. For example, GMAC could specify that
a particular auction site could only accept model years between 2002
and 2004.

Make/model exclusion constraints: which specified certain makes/models
that were to be excluded from specific auction sites.

Color exclusion constraints: which specified certain colors that were to be
excluded from specific auction sites.

Inventory constraints: which specified the desired inventory level at each
auction site. For example, GMAC could specify an inventory level
between 600 and 800 cars for an auction site at any particular time.
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The screen below shows the local constraints set for the “ADESA Boston”

auction site:
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Each auction site could have different constraint settings, which represented

the business rules that GMAC wanted to operate under for that particular site.

For the ADESA Boston auction site, the constraints represented the following

business rules (as shown above):

“Send only cars with 25,000 to 50,000 miles”
“Send only 2001, 2002, or 2003-year models”
“Do not send any Honda or Toyota Camry cars”
“Do not send any yellow or black cars”

“Keep the inventory between 300 and 400 cars”
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Except for the inventory constraint, all these constraints were defined as hard
constraints. If the Decision Optimization System had to break a hard con-
straint, it would mark this recommendation with the notation “constraint
violation.” Inventory constraints, on the other hand, were defined as “soft”
constraints and a penalty was assigned to solutions that violated these con-
straints. The penalty for violating a soft constraint would grow exponentially,
and so instances where this constraint was violated in a significant way were
rare. However, if the Decision Optimization System had to process a very large
number of cars on a single day, then the inventory constraint might have been
violated at almost every auction site. In such cases, the exponential penalty
function would make these violations uniform. For example, in a case where
all auction sites have a maximum inventory constraint of 300 cars but the
current number of cars to be distributed would increase this inventory level
to an average of 400 cars per auction, then the penalty for violating this soft
constraint would be evenly distributed across all sites (so that they have the
same degree of violation).

These constraints allowed GMAC to set various business rules (e.g. “do
not send any red cars to Florida”) within the Decision Optimization System,
and so the configuration screen served as a link between GMAC and the
system. GMAC could also use this configuration screen to investigate various
“what-if” scenarios, such as “what would be the distribution of cars if we set
the maximum transportation limit to 500 miles?” Because 300 auction sites
were configured in the system and only 50 of them were “active,” GMAC
could activate or deactivate any auction site, and then re-run the optimization
process to test a specific what-if scenario, such as “what would happen to the
aggregate resale value of all cars if we used 60 auction sites instead of 50?”

GMAC could also use different what-if scenarios to investigate different
transportation cost options available from different suppliers. The Decision
Optimization System calculated the transportation cost from any distribution
center to any auction site for any number of cars, and takes into account two
factors that influenced this cost: (1) the distance between a distribution center
and an auction site, and (2) the number of cars being shipped. The screen
below shows the transportation costs for the ADESA Boston auction:
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In this screen, the transportation cost is defined for cars sent to the ADESA
Boston auction from five different locations.!' The first two locations are
defined by the cities Boston, MA and Somerville, MA; the third location
is defined by a region containing the states Georgia, South Carolina, and
North Carolina; while the fourth and fifth locations are defined by the states
Florida and Washington, respectively. According to the transportation prices
above, it would cost $250 to send a truck to Boston, MA, plus an additional
$25 for each additional car. If GMAC wanted to ship six cars, then the trans-
portation cost would be $400 ($250 + $25 x 6 = $400).!? Also, row “No. 9”

11 The transportation cost was defined in terms of how much it would cost to ship a car (or
group of cars) from a particular ZIP code, city, state, or region to the auction site.

12 If GMAC wanted to ship more than six cars, then the cost would be $400 for the first six
cars ($250 plus $150 for six cars), plus $30 for each additional car. Hence, to ship 8 cars, the
cost would be $400 for the first six cars, plus $60 for two additional cars, for a total of $460.
Another price break occurred at the eleventh car, reducing the incremental cost per car to $35.
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above defines the transportation cost between the ADESA Boston auction and
the state of Washington. Because of the long distance (approximately 3,000
miles), it would cost $2,500 to ship a car to Washington, plus an additional
$60 for each car on the same truck. Although the cost of shipping one car
would be $2,560, the cost of shipping fourteen cars would be $3,340 ($2,500
+ $60 x 14 = $3,340), or about $239 per car (which is ten times less!). As the
following graph illustrates, the more cars transported from the same location,
the smaller the transportation cost per car (in this particular case, cars that are
transported from Boston, MA to the ADESA Boston auction):

$300 -|
$250 -
$200 -
$150 -
$100 -

$50 -

$0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1r1rrrr1rrr1

1 8 15 22 29 36
Number of cars transported

In this graph, the average transportation cost per car decreases from $275
for one car to just $47 for fourteen cars. The graph also illustrates that the
average transportation cost increases to about $62 when we need to transport
fifteen cars (because an additional truck is needed for the extra car). After
the fifteenth car, the average transportation cost goes down again, with smaller
spikes when additional trucks are needed.

Besides these transportation costs, the Decision Optimization System
also used inventory levels for each auction site to calculate several import-
ant parameters for the optimization process. One of these parameters was the
volume effect, which was based on how many similar makes/models (or cars
of the same color) were present at a specific auction site. Another important
parameter was the anticipated sale date. If GMAC had 1,200 cars at a partic-
ular auction site (or in transit) and approximately 500 were sold during each
auction session, then GMAC could assume that a car shipped today would
be sold in the third auction session. Therefore, the Decision Optimization
System needed to consider the additional depreciation and seasonality effect
during this additional time. Once the system-generated distribution plan was
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approved, the auction inventory was updated with the new cars assigned to
each auction. And lastly, the cars that had been recently sold at these auction
sites were removed from inventory.!?

The optimization model generated a variety of possible distribution plans
that served as input to the prediction model. This input provided a destina-
tion assignment (i.e. auction site) for each off-lease car, which the prediction
model used to generate a predicted sale price. The optimization model then
summed all these predicted prices (i.e. the output data) to evaluate the quality
of the distribution plan—the higher the sum of the predicted sale prices, the
better the distribution plan. Hence, there was a strong relationship between
the prediction and optimization models, as is the case within most Decision
Optimization Systems.

The optimization model was comprised of several different Al-based algo-
rithms that used different solution representations. For instance, evolutionary
algorithms (see Chapter 6.7) used solutions based on indirect representation,
where all available auction sites were sorted by distance from a particular car.
In other words, auction 1 was the closest (distance-wise), auction 2 was the
second closest, and so forth. Hence, each solution was represented by a vector
of auction site indices (relative to a particular car), and the length of the
vector was equal to the number of cars being distributed:

3 4 4 1 1

The vector above represents a solution where the first car is shipped to the third
closest auction (for this particular car), the second car is shipped to the fourth
closest auction (for this particular car), the third car is shipped also to the
fourth closest auction (note, however, that the second and third car are most
likely shipped to different auction sites, as the fourth closest auction for the
second and third car need not be the same), and so on, with the last two cars
being shipped to the closest auction sites. In this particular implementation of
evolutionary algorithms, the optimization model applied the elitist strategy,
which forced the best solution from one generation to the next, as well as
various mutation and crossover operators that were discovered through experi-
mentation. For additional information on the optimization model used within
the GMAC Decision Optimization System, please watch the supplementary
video at: www.Complexica.com/RiseofAl/Chapter6.

To enable learning within the Decision Optimization System, both the
prediction and optimization models updated themselves with the arrival of

13 Data about sold cars was also used to tune the prediction model (explained later in this
section).
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new data. The prediction model contained numerous parameters (different
values for various adjustments) that were automatically updated to capture
changing trends in the used car marketplace at regular intervals (as discussed
in Chapter 7.2), and in terms of optimization, each day brought a different
“instance” of the same problem, as changes occurred in the number and type
of cars to be distributed. For this reason, the optimization model was based on
several optimization algorithms where each algorithm contained a few param-
eters that were adapted (as discussed in Chapter 7.3), and the usage of several
optimization algorithms together generated a result that was better than the
result of any single algorithm. For additional information on the learning
components of this case study, please watch the supplementary video at: www.
Complexica.com/RiseofAl/Chapter?.

The graphical user interface of the Decision Optimization System allowed

GMAC to add, modify, or delete various constraints and business rules (as dis-
cussed earlier), as well as “visualize” the distribution plan. In the screen below,
there are icons for each distribution center and each auction site, and four per-
formance graphs. The white “horseshoe” icons represent distribution centers
where off-lease cars are collected, cleaned, and conditioned for eventual sale
at an auction site." The red “hammer” icons represent auction sites, and the
lines between the distribution centers and auction sites represent the volume
of cars transported between these points (the thicker the line, the more cars
are transported):

Average Transportation Cost Distribution Map

$145

Average Volume Effect

|

$102

Average Sales Price

H’
// $13,759

Average Lift

e i
// $355

14 Only the largest leasing companies—such as GMAC—have such distribution centers. For
leasing companies that do have them, an off-lease car is dropped off at a dealership, then
shipped to the nearest distribution center for cleaning and conditioning, and then the
Decision Optimization System ships the car to the best auction site. For leasing companies
that don’t have distribution centers, the car would be cleaned and conditioned at the dealer-
ship, and the Decision Optimization System would ship the car to the best auction site
directly from the dealership.
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The four graphs on the left-hand side display the optimization objectives:

*  Average Transportation Cost. The Decision Optimization System calculates
the total transportation cost and then displays the average cost per car.

*  Average Volume Effect. The Decision Optimization System calculates the
total lost revenue due to sending too many similar cars to the same
auction sites and then displays the average value lost per car.

*  Average Sale Price. The Decision Optimization System calculates the
expected sale price for all the cars and then displays the average value
per car.

*  Average (Net Sale Price) Lift. This corresponds to the average “profit
improvement” per car. The Decision Optimization System calculates
this as the difference between the predicted average net sale price for
the optimized solution (i.e. the sale price after subtracting all auction
fees, transportation costs, etc.), and the predicted net sale price for the
standard solution (which was based on expert rules that were developed

by GMAC over the years).

In the screen above, the average transportation cost per car (first graph) has
steadily decreased during the optimization run, while the average volume
effect per car (second graph) has increased. The Decision Optimization System
has chosen a distribution plan with a higher average volume effect, because it
was more than offset by a lower average transportation cost and higher average
sale price per car. This in turn resulted in a higher average (net sale price) lift
per car (fourth graph).

Once the optimization process is complete, the Decision Optimization
System generated an output file with the recommended distribution of cars,
specifying the distribution center, recommended auction site, predicted sale
price, transportation cost, and other data:

Yolume

No. Make Model Trim  Year Distribution Locati Sales Price ¥ pistance TANSPOTALON ot price Lift
1 Ford F150 Base 2001 Augusta, ME ADESA Buffalo $9,452 $0 44S $180 $9,272 $113
2 Jeep Grand Cherokee Limited 2003 Albany, NY ADESA Buffalo $17,786 $0 241 $123 $17,663 $225
3 Toyota Land Cruiser X 2002 Annapolis, MD ADESA Buffalo $31,662 $0 300 $153 $31,509 §318

Total 3 419,633 40 328 4152 419,481 4218
4 Dodge Durango Base 2002 Boise, ID ADESA Seattle $15,548 $94 385 $68 $15,480 474
S Dodge Grand Caravan SE 2002 Boise, ID ADESA Seattle $10,025 $61 385 $68 49,957 448
6 Ford  Expedition Eddie Bauer 2003 Boise, ID ADESA Seattle $25,502 $154 385 $68 $25,434 $122
7 Ford Expedition Eddie Bauer 2003 Boise, ID ADESA Seattle $24,858 $150 38S $68 $24,790 $119
8 Ford  Mustang GT 2002 Boise, ID ADESA Seattle  $16,361  $99 385 $68 $16,293 $78
9 Ford Mustang Base 2001 Boise, ID ADESA Seattle $11,083 $67 38S $68 $11,015 $53

10 Honda Accord EX 1997 Boise, ID ADESA Seattle $5,334 $32 385 $68 $5,266 4§26

11 Honda Accord LX 2003 Boise, ID ADESA Seattle  $12,083  §73 385 $68 $12,015 $58

12 Honda Accord EX 2002 Boise, ID ADESA Seattle $12,054 $73 385 $68 $11,986 458

13 Jeep  Grand Cherokee Limited 2001 Boise, ID ADESA Seattle $12,373 $75 385 $68 $12,305 $59

Total 10 414522 487 385 468 414,454 469

14 Dodge Durango Base 2003 Saint Paul, MN ADESA St. Louis  $18,574 $0 478 $205 $18,369 $199

15 Dodge Durango Base 2003 Springfield, IL ADESA St. Louis  $18,969 $76 109 $5S $18,914 4¢87

16 Dodge Neon HIGHLINE 2002 Springfield, IL ADESA St. Louis $7,497 $30 109 $55 47,442 422
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An auction inventory report (below) was used to show inventory at each auction
site, the number of cars being sent to each auction, the projected number of
cars at each auction, and whether or not any inventory constraints are violated:

Inventory Inventory Over(+)/

No. Auction Inventory Distributed Projected Min. Ao Under(")
1 ADESA Atlanta 261 33 294 200 300 0
2 ADESA Birmingham 254 7 261 150 300 0
3 ADESA Boston 390 7 397 300 400 0
4 ADESA Buffalo 99 3 102 100 150 0
S ADESA Charlotte 120 19 139 100 200 0
6 ADESA Cincinnati Dayton 123 8 131 100 200 0
7 ADESA Colorado Springs 297 0 297 150 300 0
8 ADESA Dallas 289 3 292 200 300 0
9 ADESA Des Moines 103 1 104 100 150 0

10 ADESA Golden Gate 141 10 151 100 150 +1

11 ADESA Houston 213 0 213 150 300 0

12 ADESA Indianapolis 135 2 137 100 150 u}

13 ADESA Jacksonville 190 9 199 200 300 -1

14 ADESA Kansas City 185 16 201 150 300 0

15 ADESA Knoxville 204 2 206 150 300 0

16 ADESA Lansing 258 2 260 150 300 0

17 ADESA Lexington 103 1 104 100 200 0

18 ADESA Little Rock 207 3 210 150 300 0

19 ADESA Los Angeles 257 0 257 150 300 0

20 ADESA New Jersey 154 6 160 150 300 0

21 ADESA Phoenix 154 10 164 150 300 0

22 ADESA Pittsburgh 156 0 156 150 300 0

23 ADESA San Antonio 286 1 287 150 300 0

24 ADESA Seattle 224 10 234 150 300 0

25 ADESA Shreveport 162 6 168 150 300 0

26 ADESA St Louis 182 6 188 100 200 u}

27 ADESA Tampa 214 S 219 150 300 0

28 ADESA Wisconsin 173 2 175 100 200 0

Total 5,534 172 5,706

When used in a high-volume setting—where thousands of cars are returned
off-lease each day—the Decision Optimization System generated a net profit
lift in the hundreds of millions of dollars per year (by predicting the auction
site at which GMAC could maximize the resale value of each car, and then
optimizing the logistics). There were a few ways to validate this financial result:

*  One way was by dividing the daily intake of returned off-lease cars into
two equal groups with an almost identical division of makes/models.
One group would be distributed using the manual method, whereas the
Decision Optimization System would distribute the other group, and
then the results would be compared.

* Another way was by using the manual method on selected days of
the week (e.g. Mondays, Wednesdays, and Fridays) and the Decision
Optimization System for the remaining days (e.g. Tuesdays and
Thursdays). Again, the results could be compared when all cars were
sold and the aggregate prices known.
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* And the third way was by using the Decision Optimization System for
one year and then comparing the average sale price with that of the
previous year (before the system was implemented).

Using this last method (year-by-year comparison), the benchmark would need
to be a trusted pricing source, like the Black Book price guide. GMAC applied
this particular method by selecting a subset of cars with the same makes/
models, year, trim, etc. and compared the average sale price of these cars with
the average Black Book sale price for 2003 (before the Decision Optimization
System was implemented). A chart depicting this comparison is presented
below:

$9,800 - $9,724
$9,700 1  $9,587 $9,620

$9,600 { . .

$9,500 -

39300 | e
$9,200 - ' '

$9,100 -

$9,000 ‘ ~ -

Black Book | Actual Sale | Black Book Projected | Actual Sale
Price Sale Price Price (new
(old model) system)

2003 2004

In this example, the average Black Book sale price for a particular mix
of makes/models, year, trim, etc. in 2003 was $9,587 per car, and GMAC
sold these cars for an average of $9,620 per car, or 0.344% higher than the
Black Book sale price. The next step would be to compare the sale prices in
2004 (when the Decision Optimization System replaced the manual method
of distributing cars) against the Black Book sale prices for that year. In this
example, the average Black Book sale price was $9,259 per car in 2004, and
the average actual sale price obtained by the system was $9,724. If the cars
had been distributed using the manual method in 2004 (termed “old model”
in the chart above), then GMAC would have attained similar results to those
of the previous year (i.e. a 0.344% improvement over the Black Book bench-
mark, or an average of $9,291 per car). Using this approach, GMAC could
credit the Decision Optimization System with the increased average sales price
of $9,724 minus $9,291, or $433 per car. With one million cars being distrib-
uted on an annual basis, this result represented $433,000,000 in additional
revenue, not to mention automation of a business process that required a sub-
stantial amount of time and human effort.



426 The Rise of Artificial Intelligence ...

And lastly, as discussed in Chapter 6.10, the concept of global optimiza-
tion was highly relevant to this distribution problem given the scale of the
problem (e.g. million cars per year) and complexity (e.g. number of possible
solutions, volume effect, price changes, transportation costs, etc.). A tempting
approach for dealing with this scale and complexity would have been to break
the overall problem into smaller “pieces”; for example, breaking up the United
States into six regions that each dealt with a subset of the overall problem.
This approach could have been taken further by breaking the problem apart
into individual states or distribution centers, solving these individual pieces,
and then “assembling” the pieces into an overall distribution plan. Although
this would have made the problem easier to solve, the result would have been
substantially inferior in comparison to solving the problem in its entirety
(because the Decision Optimization System could consider and balance the
volume effect, price changes, depreciation, and more across the entire United
States, rather than being constrained to a particular state, site, or region).
As this case study illustrates, the financial result of global optimization can
be substantial, but the amount of complexity that needs to be addressed is
equally substantial.
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Deep Blue, 269
defuzzifier, 147-8, 154-5
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demand forecasting, 383-92

descriptive analytics, 39

diagnostic analytics, 39

DIFOT, 253, 392, 395, 398, 404, 442

digital sales, 316-21

digitalization, 7, 13, 371, 381, 454,
457-9

digitization, 7

discount elasticity, 64, 68, 118, 178-9

distance methods, 120, 127-9

distribution optimization, 404-26

dynamic environment, 27-8, 31-2,
49-50, 74, 261, 264, 278,

dynamic penalties, 240-1, 280

dynamic pricing, see pricing

dynamic variable, 34-5, 50

E
Elasticity, see price elasticity
ELIZA, 17
end-user engagement, see change
management
error
- prediction, 94, 121-5, 129, 137,
141-2, 155-6, 170, 176, 181-6,
266, 273-7, 286-90, 375
- false positive, 184, 266, 270
- false negative, 184, 266, 270
- least mean square (LMS), 167-8
Euclidean distance, 128
evaluation function, 141-2, 146, 190-1,
193-7, 204-8, 221, 228-9, 236-7,
240-1
evolutionary algorithm (EA), 76-9,
229-36
- crossover, 141-6, 230-6, 284-5,
421
- mutation, 141-6, 230-6, 281,
284-5, 421
- offspring, 140, 144-6, 230-6,
242-3, 285
- parent, 144-6, 230-6, 243
- population, 140-2, 146, 230-6,
241, 243-6, 249, 281, 284-5,
380, 391
evolutionary programming (EP), 230
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evolution strategy (ES), 230

executive sponsorship, see change
management

explainability, see model

exponential smoothing, 124-5, 276-7

F
false negative, see error
false positive, see error
fast-moving consumer goods (FMCGQG),
52,55, 66
feasible solution, 48, 55, 58-9, 191,
194-6, 203-208, 213-16, 236-7,
241-3, 245, 248-51, 280, 328, 361,
399-402
feature selection, see variable selection
feedback loop, 47, 49-50, 75, 83, 119,
178, 263-6, 269-70, 273-9, 284,
286-7, 290-1
forecasting model, 107, 124, 182,
383-7
four travelers and the bridge, 192-6
fuzzifier, 147-50
fuzzy logic, 147-8, 151, 155-6
fuzzy system, 6, 10, 83, 120, 147-56,
166, 277, 283, 313, 388
- crisp input and output numbers, 148,
150, 152, 154-5
- membership function, 148-53, 155-6
- degree of membership, 148-50

G

games, 10, 76, 107, 269-70

genetic algorithm (GA), 6, 22, 272,
282

genetic programming (GP), vii, 120,
140-6, 230, 265

global optimization, see optimization

graphical user interface (GUI), 422

H
hard constraint, see constraint
hill Climbing, 83, 209-19, 221, 223-4,
227,229, 243
- iterated, 210, 216
- stochastic, 216-19, 221, 229

469

I

IBM Watson, 11

infeasible solution, 194-5, 213, 236-7,
241-2, 245, 251

inference system (engine), 134-5, 148,
1504

input dimensionality, 171

inventory optimization, 383-92

K
k nearest neighbor, 104, 128-29,
KPI alignment, see change management

L
Lamarckian evolution, 242
Larry, Digital Analyst®, 297, 305, 307,
344-5
layer, see artificial neural network
learning, 260-92
- association rule, 134, 263, 271-2
- classifier, 117, 263, 271
- collaborative, 271-2
- deep, 8, 12, 15, 161-2, 262-3,
269-70, 272
- feature, 263, 271-2
- federated, 263, 271-2
- machine, see Machine Learning
- meta, 263, 271
- rule-based, see rule-based system
- self-learning, vii, 50, 262, 295, 300,
304, 312, 318, 321, 325, 334, 343,
350, 360, 370, 375-6, 387, 397,
410, 414
- reinforcement, 263-4, 268-2
- supervised, 135, 167, 263-6, 270, 272
- unsupervised, 135, 263-4, 266-8,
270, 272, 305, 334
least mean square (LMS) error, see error
Lin-Kernighan algorithm, 23
linear model, see model
linear programming, 83, 190, 202
linear regression, 97, 120-3, 131-2
local optimization, see optimization
logic methods, 120, 121-35
logistics, 404-26
lookup table, 112, 129, 184
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M
Machine Learning, 4, 12, 27, 68, 135,
140, 174, 262-5, 268-72, 277, 291,
303, 305, 311, 313, 319, 334-8, 450
macro-segmentation, 303
Mamdani fuzzy system, 147
margin leakage, 349
market coverage, 321-31
marketing, 339-81
- spend optimization, 356-63
membership function, see fuzzy systems
memory vector (long term), see tabu
search
memory vector (recency), see tabu search
micro-segmentation, 303, 338
model
- competitor’s behavior, 75-9
- ensemble, 138, 172-81, 277-8, 282,
287, 289-290, 319, 360, 374,
388-9, 414-15
- evaluation, 182-7
- explainability, 249-53, 307
- linear, 121
- optimization, 47-9, 204-5, 260, 271,
275, 286, 291, 305, 375, 398-9,
421-2
- overfit, see overfitting
- predictive, 47-9, 54, 61, 69, 83, 88,
94-5,117-89, 200, 213, 250, 262,
271, 273-9, 288, 296, 308,
414-15
- underfit, see underfitting
- validation, 91, 94, 121, 185-6, 286,
438, 454, 463-5
- verification, 91
modeling considerations, 86-92
modern heuristics, 190
Monte Carlo, see simulation
Moore’s Law, 8
moving average, 68, 94, 124-5, 276
multi-objective, see optimization
mutation, see evolutionary algorithm

N
Natural Language Processing (NLP), see
Artificial Intelligence
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neighborhood, see optimization
neural network

- artificial (ANN)), see artificial neural

network

- biological, 157-60

- convolutional, 161

- feed forward, 160

- generative adversarial, 161

- long short-term memory, 161

- recurrent, 160-1
neuron, 8, 19-20, 156-9, 162
node, see artificial neural network
nonlinearity, 107, 160

(@)
objective, 28-9, 33-5, 42-5, 48-50, 53-4,
72-4,76-7,190-1, 197, 199, 204,
206-7, 212-13, 228-9, 237, 239,
242-3, 247-9, 251-2, 257, 259, 261,
271, 279, 281, 295, 297, 300, 302-4,
310, 317, 322, 328, 331, 336, 342,
348, 358, 361, 368, 371, 380, 385,
395, 407, 423
offspring, see evolutionary algorithm
optimization,
- evaluation measure, see evaluation
function
- global, 207-9, 211-12, 253-9
- local, 207-11, 214-18, 223, 227,
236, 254-6
- model, see model
- multi-objective, 33, 45, 72-3, 243,
247-9, 380, 391
- neighborhood, 208-12, 214, 216,
218, 220-2, 224, 227, 230-1,
284
- promotional planning, 52-79, 93,
97,103, 115, 118-19, 125, 138,
142, 146, 150-1, 155, 170, 183,
203-7, 212, 224, 232, 236-7, 242,
245, 247, 251, 258, 260-1, 270,
279-83, 292, 339, 363- 81, 436,
452, 456-7, 459
- sales channel, 327, 331-8, 443-5,
447
- territory, 321-31



The Rise of Artificial Intelligence ...

optimum
- global, 207-9, 211-12, 216, 223, 254-7
- local, 207-9, 211, 214-16, 236, 254-7
outlier, 98, 118
overfitting, 123, 140, 174, 183

P

parent, see evolutionary algorithm

Pareto optimal front, 44, 73, 248-9,
380, 390-1

payback, 440-50

perceptron, 159-60

planning horizon, 53-5, 58, 203, 280,
283-4

population, see evolutionary algorithm

prediction, 117-89

predictive model, see model

predictive analytics, 40, 117

price elasticity, 63-4, 178-9, 344, 350,
355, 375

pricing, 53, 59-61, 72, 78, 118-9, 142,
146, 150-1, 155, 165, 170, 300, 303,
310, 313, 316-19, 333, 339-56, 363,
367-9, 373, 381, 386, 389, 432-3, 452

problem-to-decision, vi-viii, 28, 34-5,
37, 39-40, 45-6, 50-2, 59-75, 83, 85,
100, 117, 273, 295, 300, 307, 325,
340, 432

promotion, 43-4, 48, 52-8, 64-71, 74,
77-8,93, 97,101, 119-22, 128-38,
165-8, 181-5, 203-7, 213-14, 234,
237-8, 241, 245, 250-1, 260, 280,
296, 339-40, 364-70, 373, 375,
377-81, 456-8

promotional planning, 53-79

proof of concept, 435-38

- analytics, 435
- software, 436
pull forward effect, 65, 68, 118-19

Q
quality measure score, 29, 32-3, 146,

190-1, 194, 196, 207, 209, 213-18,
220-3, 227-33, 235, 237, 239-40,
245, 250-2, 255, 282

quoting optimization, 309-16
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R
random forest, 120, 135-40
regression

- linear, 97, 120-2, 131-2

- non-linear, 123

- problem, 117-18, 120, 128-9, 177
requirements validation, 454, 463-5
retail chain, 43, 53, 55
return on investment (ROI), 356-63,

431, 433, 436, 438-50

Robotics, see Artificial Intelligence
rule-based system, 134-5, 182, 271-2

S
Sales, 299-338
- channel, see optimization
- digital, 443-7
- structure, 321-31
sampling, 96, 108, 137, 174, 187, 211
search space, 141, 190-1, 194-6, 203-4,
207-12, 215-16, 223-7, 230, 236,
240, 246-51, 280-5
segmentation, 303, 305, 311, 313, 319,
331-8
share of wallet, 25, 299-309, 312, 316,
322, 340-7, 350, 355, 441-2
sigmoid, see artificial neural network
simulated annealing, 141, 190, 219-24,
229-30, 237, 241, 243, 280-4, 334,
378, 380, 401
- temperature, 219-23
simulation, 103, 107-16, 120, 435, 438,
456
- agent-based, 113-16, 120, 122, 326,
329, 334, 374
- Monte Carlo, 107-13, 120
Siri, 5, 11, 17-18
slotting board, 55-9, 71, 203, 212-13,
225,229, 242, 258, 365, 367, 371-2,
374, 379, 459
soft constraint, see constraint
sponsorship, 356
- executive, 439, 453
squashing function, see artificial neural
network
stacking, 174, 176, 178
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statistical methods, 97, 120-7
stratification, 185-6
swarm intelligence (SI), 246

T
tabu search, 190, 223-30, 237, 243,
280-1
- long term memory, 227-8
- recency memory, 227-8
technology partner, 431, 438, 450-3
- science, 450-1
- software, 451
- domain knowledge, 451-2
territory optimization, see optimization
time
- dependency, 98
- horizon, 53, 98, 227-8
- series, 97, 104, 117-18, 120, 124-7,
172, 179-81, 187, 278, 374
time-changing environment, 31, 96, 451
trade promotion optimization (TPO),
52-79, 363-81
tournament selection, 233, 235
traveling salesman problem (TSP), 22,
24, 30-1, 191, 405
Turing test, 9, 17
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U

underfitting, 123

up-sell, 302-4, 310, 313-14, 316, 319,
442

A\
validation, see model
variable, 29-30, 39-40, 43-5, 48, 54, 58,
68, 74, 86, 88-98
- binary or Boolean, 93
- composition, 94
- numerical, 92-3
- nominal, 92-3
- selection, 94-5
- synthetic, 94
- transformation, 92-3
verification, see model
volume effect, 408-9
voting, 96, 128-9, 172, 174-5, 277-8,
350

w

wallet share, see share of wallet



