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Dedicated to the entrepreneurs, scientists, and business leaders  
that have paved the way for Artificial Intelligence over the decades past,  

and are paving the way for its future in the decades to come.
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PREFACE
What This Book is About  

and How to Read It

“We’re at the beginning of a golden age of AI. Recent advancements 
have already led to inventions that previously lived in the realm of science 

fiction—and we’ve only scratched the surface of what’s possible.”
Jeff Bezos, Amazon CEO

Few terms have captured our imagination in recent times like “Artificial 
Intelligence.” And not just through sensationalized media articles about how 
AI will soon displace all jobs and rule the world, but also through movies, 
books, and television shows. It now seems that everyone “knows” about AI; 
that everyone has an opinion. And yet, in our experience, few people actually 
understand what Artificial Intelligence is and isn’t, where the field came from 
and where it’s heading, and how the technology can be harnessed to generate 
commercial outcomes. 

Given the immense amount of disinformation and misunderstanding, we 
have written this book to demystify the subject of AI and explain it in simple 
language. Most importantly, we have written this book with the business 
manager in mind, someone interested in the topic from a real- world, com-
mercial perspective—a perspective of how the technology can create value and 
increase competitiveness today, rather than what might happen in 25 years’ 
time or how a superior intelligence might overcome the human race in the 
distant future. Such philosophical treatises are thought- provoking (to say the 
least) and the subject of many books published each year, but this isn’t one of 
them. Instead, !e Rise of Artificial Intelligence provides a commercial explo-
ration of AI, with particular emphasis on how AI- based systems can improve 
decision making in organizations of all shapes and sizes.

As such, this book presents Artificial Intelligence through the lens of 
decision making for two reasons: First, because the world has reached a level 
of such unprecedented speed, complexity, and noise, that no one can assess 
and evaluate all the available data when making decisions; and secondly, 
because the decisions we make affect the outcomes we achieve. In other words, 
better business decisions lead to better business outcomes. Although Artificial 
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vi The Rise of Artificial Intelligence …

Intelligence can be applied to many areas besides decision making—such as 
automation and robotics, or image and speech recognition—these subjects 
don’t feature heavily in the pages ahead except for Chapter 1, where we provide 
an overview of the research areas of AI. Ultimately, revenue and margin growth 
comes down to the decisions an organization makes (or doesn’t make), and 
hence the application of AI to decision making is our primary focus.

To best present the concepts in this book, we’ve used a problem- to- decision 
pyramid to represent the continuum that exists in terms of an organization’s 
ability to improve its decision making: 

Each layer of this pyramid represents a step in the journey for improved 
decision making: the higher we go, the better our decisions (and the more 
value we can create). !e structure of !e Rise of Artificial Intelligence reflects 
the structure of this pyramid, with the first two parts of the book investigating 
each layer of the pyramid, and the last two parts illustrating the application 
of Artificial Intelligence to real- world problems for the purpose of generating 
revenue and margin growth. 

Chapter 1 begins with a high- level overview of Artificial Intelli gence—its 
history, areas of research, and current progress and challenges—before intro-
ducing the problem- to- decision pyramid in Chapter 2, which conceptualizes the 
journey from defining a problem to making a decision through the use of 
data, information, knowledge, prediction, and optimization. Chapter 3 con-
cludes Part 1with an in- depth examination of a complex business problem set 
in the fast- moving consumer goods industry, which is used to explain the role 
of objectives, business rules and constraints, and the application of Artificial 
Intelligence algorithms for improved decision making. 
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The Rise of Artificial Intelligence … vii

!is complex business problem of promotional planning and pricing is 
then used as a running example throughout Part II, which explores the inner 
workings of predictive models, optimization methods, and various learning 
algorithms. Because data and modeling form the basis of prediction and optimi-
zation, this part of the book opens with a chapter on data and modeling, along 
with a discussion of common issues such as data availability, completeness, and 
preparation. In Chapters 5 and 6 we review various AI and non- AI methods for 
predictive modeling and optimization, whereas in Chapter 7 we present adapt-
ability and learning concepts—which together (i.e. prediction, optimization, 
and self- learning) comprise the backbone of any AI- based software system. 

As an important aside, Chapters 4 through 7 represent the most technical 
material of the entire book, attempting to explain the innermost mechanics of 
several Artificial Intelligence algorithms such as neural networks and genetic 
programming. Although non- technical readers can easily progress through 
Part II to gain a deeper understanding of algorithms and models, readers 
without an interest in data, problem modeling, or how Artificial Intelligence 
algorithms work, can jump straight to Part III, which presents real- world 
applications of Artificial Intelligence. 

!e application areas in Part III explore the problem- to- decision pyramid 
in the context of real- world problems and business objectives, covering both 
the lower layers of the pyramid focusing on data and the analytical landscape 
of an organization (i.e. information and knowledge), as well as the upper 
layers of prediction, optimization, and self- learning, and how they’re enabled 
by Artificial Intelligence methods. For ease of reading, we’ve divided Part III 
into three chapters, each being dedicated to a specific business function—in 
particular, sales, marketing, and supply chain. !ese case studies are based on an 
enterprise software platform called Decision Cloud®, which is a modularized, 
cloud- based platform that empowers staff to make better and faster decisions 
through the use of Artificial Intelligence.

And finally, Part IV concludes the book with common questions and 
concerns that organizations have on the application of Artificial Intelligence, 
such as: “Would AI work for me?” and “Where should I start?” !ese two chapters 
provide practical advice for selecting the right business problem, developing a 
business case, choosing a technology partner, as well as other topics such as 
digitalization and change management. 

To improve the reader’s understanding of the content, we’ve also created 
a set of supplementary videos that can be accessed at: www.Complexica. 
com/book/RiseofAI/. !ese videos bring to life the concepts presented in 
each chapter—for example, by providing a visual explanation of ant system 
algorithms in Chapter 1, the layers of the problem- to- decision pyramid in 
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viii The Rise of Artificial Intelligence …

Chapter 2, the workflow of promotional planning and pricing in Chapter 3, 
and so on. In these videos we’re able to “show” concepts that can only be “told” 
within the confines of the printed page. 

In terms of how to read this book or watch the videos, the ideal way is to 
progress sequentially from Chapter 1 to 12. For the less technically- inclined 
reader, however it’s possible to jump around in any sequence that best satisfies 
curiosity and interest. For example, the reader might begin with an overview 
of Artificial Intelligence in Chapter 1, then progress to the application areas in 
Chapters 8, 9, and 10, before returning to Chapters 2 and 3 to better appre-
ciate the problem- to- decision pyramid and the intricacies of solving complex 
business problems (after all, why are complex business problem so difficult 
to solve?). Alternatively, a reader might start with the application areas in 
Chapters 8, 9, and 10, then move back into Part II to better understand how 
algorithms and models work, before progressing to Part IV for practical advice 
for initiating an Artificial Intelligence project.

However, regardless of the reader’s technical sophistication or their interest 
in the implementation aspects of AI- based software, it’s highly recommended 
that everyone start with the first two chapters for an introduction into the 
world of Artificial Intelligence and an overview of basic concepts and termin-
ology. From this perspective, the sequence of reading the remaining chapters 
is of far lesser importance.

Lastly, we’d like to say that the material presented in this book is the result 
of 40 years of first- hand Artificial Intelligence research within university 
settings, and more than twenty years of implementing AI- based enterprise 
software systems in many (often very large1) organizations across three con-
tinents. With that in mind, we’d like to thank everyone who made this book 
possible, with our special appreciation going to many Australian companies 
we collaborated with over the years in the application of Artificial Intelligence, 
such as PFD Foods, BHP Billiton, BMA, Pernod Ricard Winemakers, Lion 
Drinks, Bunzl, DuluxGroup, Rio Tinto, Metcash, Pfizer, Janssen, Haircare 
Australia, Fortescue Metals Group, CBH Group, Roy Hill, Glencore, Polyaire, 
Treasury Wine Estates, and Costa Group. Within these companies, we’d like to 
thank Chris Baddock, John Barakat, Renato Bellon, Simon Bennett, Damian 
Bourne, Warren Brodie, Michael Brooks, Pierre- Yves Calloc’h, Daryl Chim, 

1 Our experiences of implementing enterprise-grade software based on the latest Artificial 
Intelligence algorithms and methods are based on many projects with global giants—such 
as BHP Billiton, General Motors, Bank of America, Pernod Ricard, Unilever, Air Liquide, 
Ford Motor Company, Glencore, Beiersdorf, Rio Tinto, and ChevronTexaco, among many 
others—as well as smaller companies that benefited from the research & development and 
innovation carried out by these larger organizations.
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The Rise of Artificial Intelligence … ix

Richard Cohen, Jevan Dickinson, Andrew Endicott, Eglantine Etiemble, Scott 
Fellingham, Greg Feutrill, Garth Gauvin, Ward Gauvin, Scott Graham, Chris 
Green, Kylie Grigg, Richard Hansen, Mark Hayden, Kim Heatherton, Mark 
Ivory, James Jones, Mike Lomman, Brett McKinnon, Stuart McNab, Doug 
Misener, Luke Mitchell, Stephen Mooney, Aemel Nordin, Mark Powell, Rod 
Pritchard, Robin Pyne, Mathew Regan, Darryl Schafferius, Mark Shephard, 
Jon Simpson, Kerry Smith, Richard Taylor, Soner Teknikeller, Lance Ward, 
John Warda, and Joel Zamek.

We’d also like thank a few individuals who contributed to the content and 
ideas in this book, namely, Reza Bonyadi, Łukasz Brocki, Tom Heyworth, 
Xiang Li, Łukasz Olech, Ali Shemshadi, Larisa Stamova, Chris Zhu, as well as 
members of Complexica’s scientific advisory board who we’ve worked with over 
the years: Reza Bonyadi, Łukasz Brocki, Longbing Cao, Raymond Chiong, Vic 
Ciesielski, Carlos Coello, Ernesto Costa, Kalyanmoy Deb, Kenneth De Jong, 
A.E. Eiben, Xiaodong Li, Masoud Mohammadian, Pablo Moscato, Frank 
Neumann, Zbigniew Raś, Markus Wagner, $omas Weise, Adam Wierzbicki, 
and Mengjie Zhang.

And finally, it was a great pleasure to write about a topic that’s been the 
central focus of our working lives for so many years, and we hope that readers 
enjoy this book as much as we enjoyed writing it. We believe that anyone 
in any organization who makes operational, tactical, or strategic decisions—
whether on the factory floor or in the boardroom—will find this book valuable 
for understanding the science and technology behind better decisions. Enjoy!

Adelaide, Australia  Zbigniew Michalewicz
March 2021 Leonardo Arantes

 Matt Michalewicz
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CHAPTER 10

Supply Chain

“Leaders win through logistics. Vision, sure. Strategy, yes.  
But when you go to war, you need to have both toilet paper and  

bullets at the right place at the right time. In other words,  
you must win through superior logistics.”

Tom Peters, business author and speaker

Supply chains are all about “supplying” the items we buy and consume each 
day through complex “chains,” which move and process raw materials to make 
the final products we see on store shelves. Depending on the industry, a supply 
chain could be as straightforward as a few retail shops, warehouses, and trucks, 
or as complex as a sprawling network of mine sites and processing plants con-
nected by rail and sea transport. From a higher perspective, however, all these 
supply chains are linked in one way or another through an intricate web of 
interactions. If we think about any common product—such as a bottle of wine 
or family car—we can trace the individual components of those products back 
through their respective supply chains, back through the trucks and ships that 
brought those products to the liquor store or dealership, back to the factories 
where those products were assembled, back through the transport network 
that brought those components to the factory, and so on.

In the case of wine, the grapes have to be grown first, before they begin 
their multi- month journey through harvesters, trucks, weighbridges, crushers, 
and other processing facilities to become the colorful accompaniment at our 
dinner table. And when it comes to cars, some components originate at mine 
sites, where the iron ore that will eventually become the car’s frame and doors 
and hood is extracted from a pit. Each of these steps in the supply chain has its 
own challenges and complexities; for example, planning a mine site requires 
consideration of what grade of ore is required at what point in time, coupled 
with truck and digger availability, workforce rosters, maintenance schedules, 
and more—which is just the first step in the process—followed by the sched-
uling of trains that will transport the ore from various mine sites to the port, 
where the coordination of stackers and reclaimers happens to ensure that each 
ship is loaded on time. And after that, there is more, much more, as the ore 
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arrives in another country and is heated by coal (which arrived at the furnace 
through a similarly complex supply chain) to become steel, which in turn is 
molded into the car’s frame and doors and hood—components that represent 
just a handful of the 30,000 parts that make up the average car, each of which 
has their own supply chain from raw materials to finished part. On top of this, 
the automaker needs to predict consumer demand for its cars across different 
countries—a difficult problem in itself—all while the cars are being assembled 
and placed on ships for transport to those markets. 

At every step, there is complexity, and the more steps we consider together, 
the more complex the problem becomes. #is inherent complexity makes 
supply chain problems particularly well suited for the application of Artificial 
Intelligence and Decision Optimization Systems. Given the multi- component 
nature of supply chains (as discussed in Chapter 6.10), we’ll present each 
part separately: First demand planning and inventory in Section 10.1, then 
production planning and scheduling in Section 10.2, followed by logis-
tics and distribution in Section 10.3. At the highest level, these are the core 
components of a supply chain operation: predicting demand, planning and 
scheduling production (whether it be the production of iron ore from a mine 
or the assembly of cars in a factory), and then organizing logistics and distri-
bution. Each component represents a complex business problem in itself, and 
together, an almost impossible challenge.

10.1 Demand Forecasting and Inventory Optimization 
#e holy grail of supply chain optimization is predicting what will be sold, 
in what quantity, where, and when—with 100% accuracy. An organization 
capable of doing that could run the leanest possible supply chain—with 
minimal inventory levels—while always satisfying customer demand and never 
stocking out. Unfortunately, such prediction accuracy is impossible to achieve, 
and for that reason, all organizations must carry some level of inventory to 
buffer against unexpected changes in demand.1

Despite the fact that organizations of all shapes and sizes have gorged 
themselves on demand planning software over the past few decades, demand 
forecasting still remains an unsolved problem within most organizations— 
“unsolved” in that the forecast error is still high, leading to stockouts, as 
well as excessive inventory levels and obsolescence. “We still carry a lot of 

1 Another reason that organizations carry inventory is because the lead times on raw materials 
can also vary, so without a buffer of these inputs the manufacturing process can come to a 
halt. Such inventory is often classified as raw materials inventory—which could be the car 
frame, door, or hood—versus finished goods inventory, which is the finished (i.e. com-
pletely assembled) car itself.
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inventory,” these organizations will confess, “not as much as before, but still a 
lot. Unfortunately, it’s in the wrong place, at the wrong time.” Hence, not only are 
working capital and obsolescence costs still high, these organizations routinely 
suffer lost sales due to stockouts.

MAX Hardware found itself in precisely this situation. After evaluating 
many software systems for demand planning, the company purchased and 
implemented a system that best fit their operation from a features, functionality, 
and workflow perspective. Being a manufacturer and distributor of hardware 
products—such as nuts and bolts, screws, and various types of tools—the 
company sold its products through both retail chains and directly to the trade 
(i.e. electricians, plumbers, carpenters, etc.). Given MAX Hardware’s exten-
sive products range—in the thousands—along with significant lead times for 
certain raw materials and components, the company’s flexibility was limited in 
ramping up production when inventory ran low. For this reason, improving 
demand forecast accuracy was of paramount importance—especially because 
trade customers couldn’t wait for backordered products, so whatever MAX 
Hardware stocked out, these customers bought from competitors (sometimes 
leading to a permanent change in loyalty).

After the new demand planning system went live, however, it became 
apparent that forecasting accuracy was no better for a large number of 
products. Using these system- generated forecasts, MAX Hardware was still 
producing too much or too little of different product lines, creating excess 
inventory of some lines and shortages of others. As for products produced in 
the correct aggregate quantity (countrywide), they were frequently sent to the 
wrong distribution center and required expedited shipping to another distri-
bution center to fulfill demand in that part of the country. Hence, the forecast 
for these products was accurate at the aggregate level, but highly inaccurate at 
the granular level of individual states or customer segments. 

Because of these forecast accuracy issues, manual overrides became the 
norm at MAX Hardware as inventory managers and key account managers 
overrode the forecast in an attempt to improve its accuracy. In many cases, 
this made the situation worse, and a large amount of time was spent “playing 
around with the numbers,” as manage-
ment put it. Eventually, the forecasting 
function was removed from the system 
altogether, as MAX Hardware reverted 
to spreadsheets for generating a manual 
forecast—which meant that, in effect, the 
company had returned to the same state 
as before the demand planning system 
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was implemented (i.e. using spreadsheets, gut feel, and manual processes to 
create the forecast). #is situation continued for some time until management 
decided to take action and began searching for a system that could provide 
superior forecasting accuracy. As such, MAX Hardware defined their business 
problem and objective as:

Reduce inventory levels and stockouts through more accurate demand forecasting 

By going through the process of implementing the failed demand planning 
system, MAX Hardware realized that the vast majority of such systems were 
based on a standard set of statistical models that were configured in the same 
way: Namely, by taking the historical sales data for each product line—like the 
one shown below:

and finding the statistical model that best “fit” this data:
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In the graph above, each curve is a statistical model, and each curve fits the 
data better than any other curve of its specific type. And so for the same his-
torical data, we have three different predictions generated by three different 
models. But by only using internal data and standard statistical models, what 
inevitably happens is that the future turns out very differently to what these 
models predicted, thereby creating a forecast error of varying magnitude for 
different products:

#rough this experience, MAX Hardware realized that demand forecasting was 
a scientific problem of selecting the most appropriate prediction method for 
the problem at hand and building a model (as discussed in Chapter 5), rather 
than a software problem of selecting the application with the most features and 
functionality. #e real difficulty lay in predicting the future, which had to be 
addressed algorithmically within the selected demand planning system. 

Data, information, & knowledge
Like many other manufacturers in the 
building materials sector, MAX Hardware 
had a substantial amount of internal data, 
including: 

• Historical sales by product by 
customer

• Historical pricing data by product 
by customer

• Historical inventory levels by product by week
• Historical forecasts created by inventory managers and by key account 

managers for retail chains
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#is data was used to provide inventory managers with a variety of reports and 
visualizations, including inventory levels against actual sales by product and 
time period:

as well as historical performance on KPIs such as stockouts, customer fill rates, 
and inventory days cover:

Although these informational reports were plentiful, they didn’t provide any 
predictive capabilities—only a rear- view mirror look at what happened in the 
past. To gain a better feel for future demand, MAX Hardware began experi-
menting with external data (such as building approvals and customer forecast 
data) in search of patterns that might repeat in the future. But such efforts were 
ad hoc, sporadic, and driven entirely by the analytical capabilities of the staff 
that undertook such analysis. For these reasons and others, the business case for 
a Decision Optimization System—one that would allow the company to hold 
the right inventory, at the right location, at the right time through improved 
demand forecasting accuracy—was created and endorsed by MAX Hardware. 

Decision Optimization System (prediction, optimization, & 
self- learning)
As is the case with many other complex business problems, MAX Hardware’s 
business objective to simultaneously reduce inventory levels and stockouts was 
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dependent on the accuracy of its predic-
tion model—in this case, the accuracy 
of predicting future demand. Although 
it was still possible to improve inventory 
levels by using an inaccurate forecast (by 
holding a larger amount of safety stock 
for the most variable product lines and 
dynamically changing these safety stock 
levels throughout the year to account 
for seasonality and other demand effects), the largest benefit would accrue 
through improved forecast accuracy.

Knowing now that the problem of forecast accuracy was algorithmic in 
nature, the new Decision Optimization System had two fundamental dif-
ferences from the first demand planning system: First, it used an ensemble 
model that combined statistical models with AI- based methods such as neural 
networks and fuzzy system (as discussed in Chapter 5); and second, each model 
was fed with both internal and external data to improve accuracy:

#e ensemble model achieved a substantial increase in forecast accuracy over 
both the manual, spreadsheet methods, as well as the statistical models used 
by the failed demand planning system. #is ensemble model became the pre-
diction component of the Decision Optimization System, providing MAX 
Hardware with the most probable view of future demand by product, by dis-
tribution center, by time period, and in many cases, by customer:
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Once the Decision Optimization System was configured and implemented, it 
considered historical sales, customer forecasts, relevant external data, as well as 
promotional and pricing information for each product:

Although the demand forecast was generated by an ensemble model that used 
internal and external data, MAX Hardware still had the capability to override 
these forecasts:
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#ese overrides were captured in an audit log, and then analyzed by the 
Decision Optimization System to provide feedback on the effectiveness of 
each manual intervention (which in most cases were inferior to the system- 
generated forecasts). As for new products that lacked sales data, the Decision 
Optimization System used the historical sales data of similar products to 
estimate future demand:

#e Decision Optimization System also allowed MAX Hardware to under-
stand the trade- off between working capital levels and customer fill rates. #is 
was done by defining working capital and fill rate targets, which could be set 
for all products and customers in aggregate, or broken down into individ-
ual targets for individual products, customers, distribution centers, and time 
periods, as shown below: 

Once these targets were set, the Decision Optimization System would attempt 
to find a Pareto curve of optimized solutions (as discussed in Chapters 2.3 
and 6.9) that illustrated the trade- off between inventory levels and customer 
fill rates: 

The Rise of AI_TXT.indd   390The Rise of AI_TXT.indd   390 5/3/21   4:11 pm5/3/21   4:11 pm



The Rise of Artificial Intelligence … 391

#is advanced capability for multi- objective optimization allowed MAX 
Hardware to implement different inventory policies for different product lines, 
customers, distribution centers, and time periods, and was based on evolution-
ary algorithms (discussed in Chapter 6.7).

#e reason that evolutionary algorithms were selected for optimization, 
is because this AI- based algorithmic method could simultaneously produce 
many potential solutions (i.e. a population of solutions)—hence it could 
generate a few final solutions at the end of a single run. Of course, these final 
solutions had to be substantially different from one another, because if the five 
solutions were quite similar (with just minimal differences), the usefulness of 
the trade- off results would be modest at the very best. To address this issue, 
the evaluation function of the evolutionary algorithm took into account the 
“uniqueness” of solutions: “similar” solutions were penalized, so they become 
less attractive as candidates for the next generation of solutions. Furthermore, 
the algorithm placed a premium on non- dominated solutions2—in other 
words, solutions where there was no single solution in the population of solu-
tions better on all objectives (e.g. working capital and customer fill rates). 
Because of this evaluation function, the evolutionary algorithm improved the 
Pareto curve of solutions from one generation to the next, and the final result 
(consisting of several “best” solutions) was presented as a diverse set of possi-
bilities that illustrated the trade- off between working capital and customer fill 
rates (as shown above).

And lastly, based upon the system- generated demand forecast and opti-
mized inventory policies, the Decision Optimization System provided MAX 
Hardware with product replenishment recommendations that could be 

2 See Chapter 6.9 for a full discussion on this topic.
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reviewed/modified/accepted before being converted into production orders 
for finished goods, or purchase orders for raw materials: 

#e Decision Optimization System implemented by MAX Hardware provided 
a number of tangible benefits, including:

• Improved forecast accuracy, which was particularly important for hard- 
to- forecast product lines. On average, forecasting accuracy increased 
from approximately 64% to 89%, with many products exceeding 95%

• A 18% reduction in finished goods inventory 
• A 43% reduction in stockouts, leading to a corresponding increase in 

customer fill rates (as measured by Delivery In Full, On Time metrics, 
“DIFOT”)

• Less time and effort for inventory planning and replenishment, with 
some tasks being reduced from a few days to a few hours

MAX Hardware also realized additional benefits in metrics such as the cash- to- 
cash cycle time, stock turns, and customer loyalty, all of which contributed to 
the company’s overall profitability and competitiveness.

10.2 Scheduling Optimization for Improved Asset 
Utilization, Throughput, and DIFOT
Every factory needs to plan and schedule its production, regardless of whether 
it’s assembling cars, bottling wine, producing cardboard boxes, or extracting 
iron ore from a mine. #ese factories can be thought of as “nodes” within a 
supply chain, where raw materials and components go in one end and finished 
products emerge from the other. Many of these nodes are interconnected, 
where the output from one node is an input into the next. For example, 
the output from a mine could be iron ore or coal, which represents the raw 
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material input into a steel- making factory. And in that steel- making factory, 
the finished sheets and slabs of steel become the raw material into the next 
manufacturing node, where the steel is formed into car components—and so 
on, with each node having its own demand forecasting, production planning, 
and scheduling process.

In this supply chain context, the words “planning” and “scheduling” are 
often used interchangeably, despite meaning very different things: Planning 
refers to what an organization will do, whereas scheduling refers to when an 
organization will do it. For this reason, planning is more macro and “higher- 
level” (i.e. deciding what products to produce each week or month, depending 
on the forecasted demand), while scheduling is more granular and exact. As a 
simple example, an airline might plan to provide 100 return flights between 
two cities for the month of May (based upon the forecast demand for travel)—
which represents what the airline will do. #is planning process is simpler than 
scheduling when these 100 round trips should occur: the exact time, crew, 
planes, maintenance, and so on. Hence, planning problems are usually easier 
to solve and optimize than scheduling problems.3 

When it comes to production planning and scheduling within a factory, 
the same concepts apply. An automaker would first create a production plan 
for building a particular mix and volume of cars (again, based upon the 
forecast demand, production capacities, inventory levels at dealerships, as well 
as other considerations), and then use this plan to schedule the assembly of 
these cars (the exact components, production lines, and timing). Hence, the 
planning process is done at a higher, more macro level, whereas scheduling is 
granular and involves many complex details, such as the availability of input 
components and raw materials, labor constraints, production line availability, 
changeover times, maintenance schedules, and more.

In this case study we’ll discuss CAST Metals, an organization with eight 
foundries spread across different locations, with each foundry operating several 
furnaces and casting machines. In a foundry operation, products are produced 
by melting metal inside a furnace and then pouring this heated liquid into 
a mold. Once the metal has cooled and solidified, the mold is removed to 
produce the final product (which could be a metal component for a railway 
network, automobile engine, pipe, or any number of other products). Creating 
and modifying a quarterly production plan of what products to produce was 

3 #e predominant difficulty in planning problems lies in accurately predicting what will 
happen in the future; once this has been addressed, the planning process is usually straight-
forward. #e difficulty in scheduling problems, on the other hand, is finding the schedule 
that maximizes or minimizes certain objectives—such as asset utilization or cost—from an 
almost infinite number of possible schedules.
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part of CAST Metals’ sales and operations planning (“S&OP”)4 process, in 
which confirmed and forecast demand was synchronized with manufactur-
ing capacity and inventory levels. During this regular planning cycle, CAST 
Metals balanced production across its foundries by considering manufactur-
ing capabilities and capacities, the location of its customers, transportation 
costs, as well as the overall production load and inventory across the network. 
Hence, demand forecasting, inventory management, and the global optimiza-
tion of production across CAST Metals’ eight foundries were addressed at the 
planning level, and were not a consideration for the scheduling process. 

When the monthly production plan was converted into a weekly schedule—
going down to hourly time buckets at the individual machine level—the 
objective was to meet customer due dates while simultaneously maximizing 
asset utilization and factory throughput. However, converting the higher- level 
plan into a detailed schedule was a complicated and difficult undertaking, 
requiring CAST Metals to consider many constraints and business rules for 
each individual foundry. Some of these constraints represented physical limita-
tions (such as melting times and furnace capacities), while others represented 
operational business rules related to: 

• Manufacturing some products during day shifts or night shifts
• Not manufacturing some products at the same time because of their 

similarity (making these products difficult to sort at the end of a pro-
duction run)

• Operating certain casting machines on particular days (e.g. from 
Monday morning to #ursday evening)

• Using certain casting machines for particular products because of effi-
ciency and tooling reasons

In addition to these business rules and constraints, the production schedule 
had to coordinate many independent processes, such as the preparation of 
cores and molds, pouring of molds, and 
the finishing of castings. #ere were also 
many relationships between various metal 
grades to consider, as well as the transi-
tion time for changing from one metal 
grade to another. Because of all these 
complexities, the result was substandard 
performance on metrics such as Delivery 

4 Sales and Operations Planning is an integrated planning process for aligning and synchro-
nizing various business functions of an organization.
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In Full, On Time (“DIFOT”) and Overall Equipment Efficiency (“OEE”), as 
well as excessive overtime labor due to last- minute schedule changes. Hence, 
CAST Metals defined their business problem and objective as:

Simultaneously increase asset utilization, factory throughput, and customer 
service levels through optimized production scheduling

To achieve this objective, CAST Metals decided to replace the manual, 
spreadsheet- based approach for production scheduling with a Decision 
Optimization System capable of:

• Converting production plans into detailed schedules that were opti-
mized for asset utilization, labor costs, and customer service levels

• Dynamically “re- optimizing” the production schedule whenever cir-
cumstances changed (customer orders, machine failures, etc.)

Given the complexity of this business problem (i.e. an astronomical number 
of possible solutions, a dynamic environment with frequent changes, and 
many problem- specific constraints), Artificial Intelligence algorithms were the 
natural choice for optimization.

Data, information, & knowledge
When creating the monthly production 
plan or weekly schedule, CAST Metals 
had access to a variety of datasets, 
including: 

• Forecast orders by product
• Confirmed orders by customer
• Historical sales by product by customer
• Bill of materials for each product
• Product routing for each product for each foundry
• Historical customer service levels in terms of DIFOT metrics
• Historical factory performance levels in terms of asset utilization, main-

tenance schedules, labor costs (especially overtime), and breakdowns
• Historical inventory levels by product by week
• Current inventory levels
• Historical demand forecasts and their accuracy

#is data was used to produce daily and weekly reports, such as inventory 
levels against actual sales by product, machine downtime, and overdue work 
orders, as shown below:
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CAST Metals used these reports to balance urgent and overdue orders against 
run lengths and changeover times, with the output of this spreadsheet- based 
process being a day- by- day, line- by- line production schedule:
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Besides being labor intensive and time consuming, the scheduling process was 
inefficient for many other reasons, including: 

• #e final schedule didn’t consider many business rules and constraints, 
largely because these rules were in people’s heads. Consequently, the 
production schedule was usually “un- executable,” in that it omitted or 
abstracted certain variables such as maintenance, changeover times, dif-
ferences in the defect rate between various machines, and variations in 
production run times. #e production schedule was therefore seldom 
achieved, and schedule adherence was low.

• #e production sequence was suboptimal, as no team of human experts 
could consider all possible scheduling combinations, which in turn led 
to factory performance issues.

• #e schedule was static and disconnected from the factory floor, as there 
was no data feed from each machine to understand production from a 
“scheduled” vs. “actual” point of view. #is meant that re- scheduling 
was a slow and painful process of first realizing that something had 
happened—such as machine failure, high defective rate, or some other 
event—followed by updating the spreadsheet- based schedule, before 
finally printing a new version and pushing it down to the factory floor 
(by which time it was again out of sync and not reflective of what was 
actually happening).

#e business case for configuring and deploying a Decision Optimization 
System was based on achieving higher production volumes through each 
foundry (leading to greater revenue per site) and fewer late orders (leading to 
fewer financial penalties, greater customer satisfaction, and greater customer 
loyalty). Consideration was also given to potential future phases, where the 
Decision Optimization System could be extended to production planning 
and demand forecasting, thereby allowing CAST Metals to improve demand 
forecast accuracy and reduce inventory (as discussed in the previous case 
study), as well as globally optimize across all eight foundries to realize further 
efficiency gains.

Decision Optimization System 
(prediction, optimization, & 
self- learning)
To enable optimized scheduling across 
its eight foundries, CAST Metals imple-
mented a Decision Optimization System 
based on Artificial Intelligence methods 
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for optimization. When converting the production plan into an executable 
schedule for each foundry, the Decision Optimization System considered the 
current inventory level of each product (as measured in days cover), as well 
as the designation of each order—namely, whether it was “make to stock” for 
replenishing inventory or “make to order” for a specific customer:

#ese inventory levels and designations impacted the prioritization of orders, 
with the Decision Optimization System placing more emphasis on orders 
where the product was being produced for a specific customer and no inven-
tory existed for buffering the due date.

Another important consideration was the interplay between furnaces and 
casting machines, which represented the core scheduling issue. #e primary 
objective was to optimize the distribution of production orders over some 
period of time in a way that maximized furnace utilization and machine 
throughput. Because the furnaces and machines worked together in the pro-
duction process (first melting, then casting), the maximization of furnace 
utilization and production- line throughput had to be considered jointly. 
Secondary objectives included the maximization of DIFOT metrics and mini-
mization of labor costs when optimizing the production schedule.

To generate a detailed schedule that was optimized (as well as realistic and 
executable), the Decision Optimization System held a variety of foundry-  and 
machine- specific data that was referenced by the optimization model, such as 
changeover times between various metal grades:
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Within the optimization model itself, the approach for handling constraints 
was based on decoders, which separated between objectives and constraints (as 
discussed in Chapter 6.8). Using this approach, the optimization model used 
the constraints to “guide” the optimization process toward feasible schedules of 
higher quality. #is constraint- handling approach also allowed for easy modifi-
cation of business rules related to labor availability:
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and machine availability:

Both labor and machine capacities were treated as soft constraints, allowing the 
Decision Optimization System to flex production up and down as required. 
By modifying these constraints (or changing the capacity of the foundry in a 
more fundamental manner—for example, by adding another casting machine 
within the Decision Optimization System), CAST Metals could ask “what- if ” 
questions and create alternate schedules, as shown below:
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CAST Metals used this functionality to analyze a variety of “what- if ” scenar-
ios, including:

• Examining the effect of moving a production order forward or back, or 
from one machine to another

• Splitting large production orders into smaller work orders 
• Examining the effect of constraining certain orders so they couldn’t run 

in parallel
• Examining the effect of changes to the production calendar, furnaces, 

and production lines.

#e most important output of the Decision Optimization System, however, 
was the production schedule itself. To generate feasible schedules right from 
the start of the optimization run, the system used a combination of evo-
lutionary algorithms and simulated annealing (plus a decoder responsible 
for generating near- feasible solutions). Although the quality of the system- 
generated schedule improved as the optimization run progressed, CAST 
Metals could stop the run at any point and use the best available schedule 
rather than waiting to the end. #is allowed for flexible usage and provided 
CAST Metals with ultimate control over the optimization process. #e screen 
below shows an optimized schedule for a particular week, where each bar 
represents a production order: 

#e details of each order could also be viewed by clicking on any bar, or by 
selecting the order from the items list:
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#e Decision Optimization System also received a live data feed from each 
machine, allowing it to compare actual production against scheduled produc-
tion in real time. Whenever the situation reached a point where the schedule 
was no longer feasible, the Decision Optimization System would flag that 
re- optimization was required based upon the current state of production in 
the foundry—in other words, that the current production schedule would no 
longer be met, and that re- optimization was required to re- align future pro-
duction with the current reality on the factory floor.

#is streaming machine data allowed for a real- time view into each foundry, 
providing CAST Metals with not only a “scheduled” versus “actual” perspec-
tive, but also an ability to dynamically re- optimize production whenever 
the unexpected occurred (which unfortunately was often). During this re- 
optimization process, if the Decision Optimization System ran out of capacity 
in the foundry to process all orders with hard due dates, it would flag these 
orders as “unassigned items,” as shown below:

#e Decision Optimization System also provided additional reporting on 
various utilization ratios, throughputs, and other KPIs in both graphical and 
numerical form. Such reporting was also displayed within the scheduling 
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system itself, as shown below, allowing CAST Metals to evaluate the perfor-
mance of each production schedule:

From the very start of the project, CAST Metals had a clear view of the KPIs 
it wanted to improve, which provided a baseline and benchmark for validating 
the performance of the Decision Optimization System. Also, given the scale of 
CAST Metals’ manufacturing footprint, management knew that any improve-
ment in these metrics would translate to a direct and significant improvement 
in financial performance of the entire business. #e realization of these benefits, 
however, was dependent on CAST Metals successfully navigating two change 
management challenges:

• First, the spreadsheets that CAST Metals had built up over the years had 
to be replaced by the Decision Optimization System, which was a chal-
lenge in itself within each foundry. “But I’ve been using that spreadsheet 
for years,” the production schedulers would complain. “No system can 
capture everything I’ve put into that spreadsheet!” 

• And secondly, during the user acceptance testing (“UAT”) phase of the 
project, CAST Metals encountered further resistance from end users 
because the Decision Optimization System was recommending sched-
ules that “didn’t look right.” 

On this second point, CAST Metal realized that “optimization projects” 
were very different from “automation projects,” and thus required more sig-
nificant change management. If CAST Metals had configured the Decision 
Optimization System to exactly replicate what end users did and generate 
schedules that “looked right” to everyone, then the only value of such a system 
would have been the time saved in generating these schedules. #is would 
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have become an automation project, because CAST Metals would be auto-
mating the scheduling process with the end result being exactly the same (only 
faster). #is wasn’t the outcome CAST Metals was seeking, so the Decision 
Optimization System wasn’t configured to replicate what end users did, but 
rather, to generate optimized schedules that could improve various KPIs (and 
so by definition, these schedules had to be different to those being generated by 
end users up to that point). #e only way the Decision Optimization System 
could create value was by recommending a different decision that led to a dif-
ferent result—in the case of CAST Metals, a different production schedule that 
led to improved asset utilization, throughput, and customer service levels). And 
because the system was recommending something different to what had been 
typically done in the past, change management was more challenging—“Hey! 
#at doesn’t look right to me,” the production schedulers would say. “I would 
have done it differently.”

#e first change management challenge was addressed through exten-
sive user training on the new Decision Optimization System, whereas the 
second challenge was addressed by educating end users on why the system was 
making certain recommendations. In addition to this education, the Decision 
Optimization System provided an explanation in natural language as to why 
a certain schedule or scheduling decision was optimal (i.e. “explainable AI,” as 
discussed in Chapter 6.9). CAST Metals was able to successfully navigate these 
change management issues in large part because of strong executive sponsor-
ship and leadership (which Chapter 11.3 explores in greater detail). Once the 
system was fully adopted, CAST Metals began executing the new schedules 
and realized an immediate improvement in manufacturing performance. Each 
foundry experienced a jump in DIFOT and asset utilization metrics, as well as 
reduced overtime labor requirements. #e improvement within each foundry 
varied according to the capability of the production scheduler and the sophis-
tication of their spreadsheets. In other words, the Decision Optimization 
System outperformed very capable staff with very sophisticated spreadsheets, 
but the outperformance was modest; as for average staff with basic spread-
sheets, the improvement was pronounced.

And lastly, not only did CAST Metals know what was happening within 
each foundry in real time, but the company could now dynamically re- optimize 
and re- align the forward schedule with the production realities at each site, 
thereby running a continuously optimal manufacturing process.

10.3 Logistics and Distribution Optimization
Logistics is the “connector” of a supply “chain,” involving modes of transport 
(such as trucks, trains, and ships), as well as storage locations. Many logistics 
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and distribution problems are “multi- nodal,” in the sense that one truck needs 
to make many deliveries or stops (like the traveling salesperson problem in 
Chapter 2.1, which is representative of typical routing or journey planning 
problems). In multi- nodal problems, the optimization objective is to find the 
route that minimizes travel time and other cost metrics, while satisfying a 
number of hard and soft constraints (such a delivery times or slots). From that 
perspective, such problems are “one dimensional” and rarely encompass any 
prediction component other than a demand forecast used for load planning 
purposes.

Rather than concentrating on a standard logistics operation, this case study 
will explore a node- to- node distribution problem where the complexity arises 
not from the optimization challenge of finding the best route, but from the 
number of factors that impact the distribution plan (and which need to be 
considered during the optimization process, such as price changes, inventory 
levels, seasonality, and more), and the significant prediction problem that 
underpins the entire optimization result.

With this in mind, the case- study presented in this section is about GMAC, 
a car financing organization in the United States that leases around one million 
cars each year to consumers, organizations, and rental agencies.5 When a car 
lease agreement expires—which could be from one to five years—the car is 
either returned to GMAC or purchased by the leasee (in either case, these cars 
are called off- lease cars). GMAC doesn’t need to worry about the purchased off- 
lease cars, but it needs to sell the returned off- lease cars at one of many auction 
sites located across the United States. Each of these returned cars is different in 
its make, model, body style, trim, color, year, mileage, and damage level, and 
the overall number of cars leased each year translates into approximately 5,000 
returned off- lease cars each day. #e following figure illustrates a particular 
day, where green circles represent the returned off- lease cars and yellow circles 
represent the 50 auction sites at which GMAC sells its cars:

5 #is case study is also covered in the article by Michalewicz, Z., Schmidt, M., 
Michalewicz, M., and Chiriac, C., called A Decision- Support System based on Computational 
Intelligence: A Case Study, IEEE Intelligent Systems, Vol. 20, No. 4, July–August 2005, 
pp. 44–9, which can be downloaded from: https://www.complexica.com/hubfs/case%20
studies/Case_Study_An_Intelligent_Decision_Support_System.pdf.
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#e larger the green circle, the more cars were returned at that particular 
location, with the sizes and locations of these circles varying from one day 
to the next (as different people and organizations return their cars at differ-
ent locations). #e yellow circles, on the other hand, represent the designated 
50 auction sites where the returned off- lease cars are sold. #e locations of 
these auction sites are fixed.6

GMAC’s task was to distribute the daily intake of approximately 5,000 
cars to the 50 designated auction sites; in other words, to assign an auction 
site to each particular off- lease car. For example, if the first car is located at a 
dealership in Northern California, GMAC would consult some reports7 on 
what the average sale price for that particular car is at each auction site (after 
adjusting for mileage, trim, damage level, etc.), and then ship the car to the 
auction site with the highest average sale price. Of course, GMAC also needed 
to estimate the transportation cost to each auction site (the longer the distance, 
the higher the cost, and longer transportation times resulted in higher depre-
ciation costs and risks). Using this method, GMAC’s decision for the first car 
could be visualized in the following way:

6 Although the locations of the 50 auction sites are fixed, GMAC may, from time to time, 
change the auctions it does business with by dropping some sites and adding new ones 
(thereby changing the location of the 50 yellow circles). #is may happen if cars are rou-
tinely damaged at some sites, auction fees go up, or some other reason. However, these 
decisions raise several additional questions, such as: How do we evaluate the monetary impact 
of dropping some sites and adding others? and Can we increase profits by replacing some auction 
sites with others? We will address these important questions later in this section.

7 Many reports are available for estimating the auction price of cars, including Black Book, 
Kelley Blue Book, the Manheim Market Report, and others.
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with the blue line representing the 
decision to ship the car from Northern 
California (green circle) to an auction site 
in Idaho (yellow circle). GMAC would 
then repeat this process for each car. 
Although straightforward, this approach 
for distributing off- lease cars didn’t work 
very well, and led to a situation when 
GMAC didn’t capture the full value of each off- lease car. Because the entire 
process was based on manual analysis and individual, car- by- car decisions, any 
small mistake that resulted in a net reduction of “only” $50 per car, would cost 
GMAC $250,000 in a single day! 

As such, GMAC defined their business problem and objective as:

Maximize the aggregate resale value of all returned off- lease cars by optimizing 
the logistics and distribution to individual auction sites

#is was a difficult business problem to solve and objective to realize, because 
of the following reasons:8

1. Number of possible solutions. #ere were 50 possible solutions for each 
individual car, as GMAC can ship a car to any of the 50 auction sites; 
for two cars, there were 2,500 possible solutions (50 × 50); for three 
cars, 125,000 possible solutions (50 × 50 × 50), and so on. For 5,000 

8 Recall our overview of complex business problems in Chapter 2, where we discussed the 
astronomical number of possible solutions, dynamic environments, and problem- specific 
constraints—all of which are present in this problem.
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cars, however, there were approximately 505000 possible solutions 
(50 multiplied by itself 5,000 times)! #is was an overwhelming number 
(1 followed by 8,494 zeros) and no supercomputer could evaluate all 
these combinations in a billion human lifetimes. Nevertheless, GMAC 
had to make daily decisions for these cars, irrespective of how complex 
the problem was or the number of possible solutions.

2. Transportation costs. When GMAC shipped an entire truckload of cars 
from one location to another, it would realize a better price per car 
than when it shipped only one car (or a few cars), thereby lowering the 
overall logistics cost. #is occurred because the cost of transport was 
primarily tied to individual trucks and drivers, with the number of cars 
on each truck being of secondary importance. Hence, the relation ship 
between transportation cost and number of transported cars looked 
similar to the model presented towards the end of Chapter 6.1. Given 
this model, the cost for sending a single car from one location to another 
was $250, but the cost of sending two cars was $300 (reducing the cost 
per individual car to $150), with each additional car being $50. If a 
truck could hold 10 cars, then the transportation cost of a fully loaded 
truck was $700, or just $70 per car. But if GMAC needed to transport 
11 cars, then a “jump” occurred in cost with $700 for the 10 cars on the 
first truck, and $250 for the single car on the second truck (for a total 
of $950). 

3. Volume effect. Although GMAC wanted to send each car to the auction 
site where the highest price could be realized, sending too many cars of 
same color, make, and mileage to the same auction site would trigger 
the volume effect. For example, if GMAC sent 45 white Chevrolet 
Camaros to the same auction site (which might have all been returned 
from a rental agency on the same day), then these cars were likely to 
sell for the minimum opening price, because with 45 identical cars for 
sale, there wouldn’t be enough buyers to bid the price up on each car 
(meaning there was a limit to how much supply could be absorbed 
by each site). On the other hand, if GMAC sent only five Chevrolet 
Camaros to the same auction site, then these five cars would fetch a 
higher price because the same number of buyers would be bidding on 
a smaller number of cars. To illustrate this point, the volume effect for a 
particular car at a particular auction site might be:
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 #is graph illustrates the volume effect phenomenon, where GMAC 
could realize more money per car by selling fewer similar cars. In this 
example, the current average sale price for a particular car at a partic-
ular auction site might be approximately $10,400, and GMAC could 
realize this price by shipping up to seven cars to this location. However, if 
GMAC shipped 30 similar cars, then the average sale price per car would 
drop to $9,450. Note that the term “similar” could mean more than 
just the same make, model, or color. For example, many white compact 
cars of different makes and models often competed for the same buyers, 
thereby reducing the average sale price per car. Consequently, due to the 
volume effect, it wasn’t effective for GMAC to consider one car at a time.

4. Price depreciation and inventory holding costs. To further complicate 
matters, every auction site had a set day for selling cars (e.g. every 
second Friday at 10 am). Because of this, if GMAC shipped 100 cars 
to an auction site and the delivery arrived one or two days after the 
auction day, then these cars would sit until the next sale day, incur-
ring depreciation and holding costs. Because of this, GMAC needed to 
check the exact sale day and inventory levels across all 50 auction sites 
before making any new distribution decisions.

5. Price changes. Used car prices change over time, and these changes 
may be slow and subtle (over many years as consumer preferences 
change), sudden and dramatic (as was the case in March 2020 when 
the COVID- 19 panic set in), or region specific (e.g. convertible cars 
become unpopular in northern states during the winter months, and 
consequently, they fetch a lower price—which is part of the “seasonality 
effect”). GMAC also had to deal with next year’s models entering the 
market during August and September, causing older models to drop 
sharply in price (also part of the seasonality effect). During this time 
of year it was better to ship cars nearby and sell them quickly, rather 
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than shipping them longer distances to more lucrative auction sites. 
Additionally, new body style models are introduced every few years, 
causing an even bigger drop in price for the older body style.

Coming up with the daily decision of where to send the returned off- lease cars 
wasn’t easy, as the decision needed to consider the above factors. 

Furthermore, the process of transporting a car to a specific auction site 
could take up to two weeks, as the truck would have to drive to the pick- up 
location, load the car, pick up some additional cars (possibly somewhere close 
by), and then finally deliver the cars to the designated auction. Because of 
this, GMAC had to consider the sale price for each car a couple of weeks 
ahead of time. For example, for a car located in Jacksonville, Florida, GMAC 
might consider sending this car to an auction site in Georgia, Pennsylvania, or 
California. #e price prediction for these three auction sites would be differ-
ent, because GMAC would be predicting the sale price five days into the future 
for the Georgia auction site, ten days into the future for the Pennsylvania 
auction site, and fifteen days into the future for the California auction site. 
#e differences in time were due to the transportation distance. However, to 
predict these prices, GMAC needed to consider the seasonality effect, price 
depreciation, volume effect, and inventory levels. In making the decision of 
Georgia vs. Pennsylvania vs. California, GMAC would also need to weigh the 
possibility of a better price in California against the higher transportation cost, 
higher depreciation, and higher overall risk. 

#ese challenges were ideally suited for AI- based algorithms and the imple-
mentation of a Decision Optimization System, which would rely on advanced 
prediction, optimization, and self- learning capabilities to improve GMAC 
 distribution decisions.

Data, information, & knowledge
GMAC maintained a historical collec-
tion of transactional sales data that could 
be visualized as a two- dimensional table 
representing off- lease cars sold at auction. 
One dimension of the table represented 
the number of records (cars), and the 
other dimension represented the charac-
teristics of each car (e.g. VIN,9 make, model, mileage, etc.):

9 VIN is an acronym for “Vehicle Identification Number,” which is a string of 17 digits and 
letters that contains considerable information about a specific vehicle, (including country of 
origin, manufacturer, and model year).
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#is historical sales data contained the VIN, postal code of the auction site 
(ZIP), transaction date, and the sale price of each car:10

VIN ZIP Date Price

39WWK93309KJ33012 28262 2.11.2004 $12,035

UDJ2293M99DL0K220 30334 2.11.2004 $15,600

4D09WJD92JE93H990 30334 2.11.2004 $10,590

KD37D92JF83NF8822 90012 3.11.2004 $9,265

NKI2389DD974F2235 28262 3.11.2004 $13,450

K29DH38FHW02HD923 48243 3.11.2004 $13,955

MDK293HFDWH299305 90012 4.11.2004 $12,495

28DN39FNDJW2N0024 90012 4.11.2004 $11,925

29H93NFI3HJF93F04 48243 4.11.2004 $11,396

ND920ENF1NAD02834 48243 5.11.2004 $9,835

D39DJ39EHQ8HH9335 28262 5.11.2004 $8,965

02UFIMF03JF9SH935 90012 5.11.2004 $13,960

D932NF93HG9057362 48243 5.11.2004 $8,830

00F8EB3IDNB293758 48243 8.11.2004 $7,920

IE038THJ203TH0234 28262 8.11.2004 $19,250

39FH324MV092HGM39 48243 8.11.2004 $22,640

F92N9F389FH120458 90012 8.11.2004 $13,580

F9485JG03H25495J5 30334 9.11.2004 $16,970

08GN94HJH03J49327 30334 9.11.2004 $14,320

F04JH402KG4509G45 48243 9.11.2004 $9,110

GMAC also possessed data for individual auction sites (e.g. the average 
number of participating auctioneers during different times of the year) and 
external data such as historical weather conditions at different auction sites 
during different sale days, historical petrol prices, color preferences in differ-
ent areas of the United States, and so on. GMAC used this data to generate 
a variety of reports for the price difference between auction sites for the same 
off- lease car on attributes such as color, volume of cars sold at each auction site, 
number of auctioneers at different seasons at different auction sites, and so on. 
#e following graph illustrates one such report: #e price difference between 
auction sites for one particular make (Pontiac) and model (Grand Prix) with 
an odometer reading between 20,000 and 40,000 miles:

10 We could easily obtain the characteristics of each car by merging it with the previous table.
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GMAC also studied the volume effect at different auction sites for various 
types of cars, and this knowledge was presented via graphs and other reports, 
like the one shown below (which shows the sale price of a Pontiac Grand Prix 
sold with a number of similar cars at the same auction site, with the different 
colors representing different odometer ranges—in this example, yellow circles 
correspond to the lowest odometer range of 0 to 10,000 miles:

Nonetheless, all this data, information, and knowledge were of limited assis-
tance in helping GMAC make the best daily distribution decision, because 
even if GMAC had “perfect knowledge” and could accurately predict the price 
of any car at any auction site for any day, they still wouldn’t know how to 
optimally distribute 5,000 cars because of all the complexities of this problem, 
such as logistics, price depreciation, inventory levels, volume effect, and so on. 
#e number of possible distributions was simply too large to be evaluated in 
any reasonable amount of time, which drove the business case for an AI- based 
Decision Optimization System capable of increasing the aggregate resale value 
of returned off- lease cars.
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Decision Optimization System 
(prediction, optimization, 
& self- learning)
For this particular logistics and distribu-
tion problem, the Decision Optimization 
System had to consider the character-
istics of each car, characteristics of each 
auction site, transportation costs, volume 
effects, countrywide inventory (as well as 
cars in transit to various auction sites), price depreciation curves, and market- 
driven changes in price. 

Before the predictive model was built, the data went through a data 
preparation process that included variable transformation and variable com-
position, data reduction and normalization, and the generation of missing 
values (as discussed in Chapter 4.2; also, for more information on this 
process, please watch the supplementary video at: www.Complexica.com/
RiseofAI/Chapter4). GMAC also augmented its internal data with Black 
Book data (which provided regional sale prices, with each region containing 
several states and more than a dozen auction sites) and the Manheim Market 
Report (which reported on the average sale price of all cars sold at auctions 
owned by Manheim). #e resulting prediction model was an ensemble based 
on decision trees (as discussed in Chapter 5.1) that generated sale price pre-
dictions in the following sequence of steps: 

1. Base price. A predicted “base price” was generated based on the car’s 
make, model, body style, and year. 

2. ZIP- based make/model adjustment. Because some makes/models sold 
for a premium or discount in certain regions, the prediction model 
adjusted the base price for these specific makes/models in certain regions 
(e.g. Chevrolet Corvettes might sell for a $300 premium in Florida and 
California, and a $600 discount in Montana and Idaho).

3. Car group/color adjustment. Because some car groups/colors sold 
for a premium or discount irrespective of the region, the prediction 
model adjusted the base price for these specific car groups and colors 
(e.g. yellow Chevrolet Corvettes might sell for a $500 premium, while 
green ones for a $1,000 discount).

4. Mileage adjustment. #e prediction model adjusted the base price for 
mileage and model- year- age, which was the age of a car according to its 
model year (i.e. when the 2005 Chevrolet Corvette became available in 
August 2004—which underwent a complete body style change—the 
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model- year- age of the 2004 Chevrolet Corvette became 1, as that model 
year was only one year old). 

5. Depreciation adjustment. #e prediction model adjusted the base price 
for daily depreciation, as calculated from the car’s return date to its 
predicted sale day. Because the daily depreciation rate was higher in 
the summer months (preceding the introduction of new models), the 
depreciation rate increased from June onwards, reached its highest value 
in August, and then decreased to lower than average values for October, 
November, and December.

6. Seasonality adjustment. Because some makes/models sold for a 
premium or discount in certain regions at different times of the year, 
the prediction model adjusted the base price for these specific makes/
models during certain seasons (e.g. convertible Chevrolet Corvettes 
may sell for a $1,800 discount in the northern states during the winter 
months). 

7. UVC adjustment. #e Universal Vehicle Code (UVC) component 
provided a more detailed car specification than the VIN, and in cases 
where the UVC was available, the prediction model adjusted the base 
price for additional options (e.g. the UVC might reveal that a specific 
Chevrolet Camaro is equipped with an upgraded suspension package).

For an average daily intake of off- lease cars, the ensemble model would predict 
each car’s final auction price. However, if GMAC received a large number of 
similar cars on a particular day, then the predicted auction prices for these cars 
were adjusted further to account for the volume effect. For more informa-
tion on the predictive model used by GMAC for this particular distribution 
problem, please watch the supplementary video at: www.Complexica.com/
RiseofAI/Chapter5.

#e Decision Optimization System also provided GMAC with the ability 
to add, modify, or delete various constraints and business rules. Constraints 
that were applied to all auction sites were regarded as global constraints, and 
an example of this was the “maximal transportation distance” constraint which 
limited the transportation distance of all cars—as shown in the screen below:
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GMAC could also implement a large variety of local, auction- specific con-
straints within the Decision Optimization System, such as: 

• Mileage constraints: which defined the upper and lower mileage of cars 
that could be shipped to a specific auction site. An example of this con-
straint would be “only ship cars that have between 30,000 and 70,000 
miles to the ADESA Atlanta auction site.” 

• Model year constraints: which specified a range of model years that could 
be sent to a specific auction site. For example, GMAC could specify that 
a particular auction site could only accept model years between 2002 
and 2004. 

• Make/model exclusion constraints: which specified certain makes/models 
that were to be excluded from specific auction sites.

• Color exclusion constraints: which specified certain colors that were to be 
excluded from specific auction sites. 

• Inventory constraints: which specified the desired inventory level at each 
auction site. For example, GMAC could specify an inventory level 
between 600 and 800 cars for an auction site at any particular time.
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#e screen below shows the local constraints set for the “ADESA Boston” 
auction site:

Each auction site could have different constraint settings, which represented 
the business rules that GMAC wanted to operate under for that particular site. 
For the ADESA Boston auction site, the constraints represented the following 
business rules (as shown above): 

• “Send only cars with 25,000 to 50,000 miles” 
• “Send only 2001, 2002, or 2003- year models”
• “Do not send any Honda or Toyota Camry cars”
• “Do not send any yellow or black cars”
• “Keep the inventory between 300 and 400 cars” 
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Except for the inventory constraint, all these constraints were defined as hard 
constraints. If the Decision Optimization System had to break a hard con-
straint, it would mark this recommendation with the notation “constraint 
violation.” Inventory constraints, on the other hand, were defined as “soft” 
constraints and a penalty was assigned to solutions that violated these con-
straints. #e penalty for violating a soft constraint would grow exponentially, 
and so instances where this constraint was violated in a significant way were 
rare. However, if the Decision Optimization System had to process a very large 
number of cars on a single day, then the inventory constraint might have been 
violated at almost every auction site. In such cases, the exponential penalty 
function would make these violations uniform. For example, in a case where 
all auction sites have a maximum inventory constraint of 300 cars but the 
current number of cars to be distributed would increase this inventory level 
to an average of 400 cars per auction, then the penalty for violating this soft 
constraint would be evenly distributed across all sites (so that they have the 
same degree of violation).

#ese constraints allowed GMAC to set various business rules (e.g. “do 
not send any red cars to Florida”) within the Decision Optimization System, 
and so the configuration screen served as a link between GMAC and the 
system. GMAC could also use this configuration screen to investigate various 
“what- if ” scenarios, such as “what would be the distribution of cars if we set 
the maximum transportation limit to 500 miles?” Because 300 auction sites 
were configured in the system and only 50 of them were “active,” GMAC 
could activate or deactivate any auction site, and then re- run the optimization 
process to test a specific what- if scenario, such as “what would happen to the 
aggregate resale value of all cars if we used 60 auction sites instead of 50?” 

GMAC could also use different what- if scenarios to investigate different 
transportation cost options available from different suppliers. #e Decision 
Optimization System calculated the transportation cost from any distribution 
center to any auction site for any number of cars, and takes into account two 
factors that influenced this cost: (1) the distance between a distribution center 
and an auction site, and (2) the number of cars being shipped. #e screen 
below shows the transportation costs for the ADESA Boston auction:
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In this screen, the transportation cost is defined for cars sent to the ADESA 
Boston auction from five different locations.11 #e first two locations are 
defined by the cities Boston, MA and Somerville, MA; the third location 
is defined by a region containing the states Georgia, South Carolina, and 
North Carolina; while the fourth and fifth locations are defined by the states 
Florida and Washington, respectively. According to the transportation prices 
above, it would cost $250 to send a truck to Boston, MA, plus an additional 
$25 for each additional car. If GMAC wanted to ship six cars, then the trans-
portation cost would be $400 ($250 + $25 × 6 = $400).12 Also, row “No. 9” 

11 #e transportation cost was defined in terms of how much it would cost to ship a car (or 
group of cars) from a particular ZIP code, city, state, or region to the auction site.

12 If GMAC wanted to ship more than six cars, then the cost would be $400 for the first six 
cars ($250 plus $150 for six cars), plus $30 for each additional car. Hence, to ship 8 cars, the 
cost would be $400 for the first six cars, plus $60 for two additional cars, for a total of $460. 
Another price break occurred at the eleventh car, reducing the incremental cost per car to $35.
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above defines the transportation cost between the ADESA Boston auction and 
the state of Washington. Because of the long distance (approximately 3,000 
miles), it would cost $2,500 to ship a car to Washington, plus an additional 
$60 for each car on the same truck. Although the cost of shipping one car 
would be $2,560, the cost of shipping fourteen cars would be $3,340 ($2,500 
+ $60 × 14 = $3,340), or about $239 per car (which is ten times less!). As the 
following graph illustrates, the more cars transported from the same location, 
the smaller the transportation cost per car (in this particular case, cars that are 
transported from Boston, MA to the ADESA Boston auction):

In this graph, the average transportation cost per car decreases from $275 
for one car to just $47 for fourteen cars. #e graph also illustrates that the 
average transportation cost increases to about $62 when we need to transport 
fifteen cars (because an additional truck is needed for the extra car). After 
the fifteenth car, the average transportation cost goes down again, with smaller 
spikes when additional trucks are needed. 

Besides these transportation costs, the Decision Optimization System 
also used inventory levels for each auction site to calculate several import-
ant parameters for the optimization process. One of these parameters was the 
volume effect, which was based on how many similar makes/models (or cars 
of the same color) were present at a specific auction site. Another important 
parameter was the anticipated sale date. If GMAC had 1,200 cars at a partic-
ular auction site (or in transit) and approximately 500 were sold during each 
auction session, then GMAC could assume that a car shipped today would 
be sold in the third auction session. #erefore, the Decision Optimization 
System needed to consider the additional depreciation and seasonality effect 
during this additional time. Once the system- generated distribution plan was 
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approved, the auction inventory was updated with the new cars assigned to 
each auction. And lastly, the cars that had been recently sold at these auction 
sites were removed from inventory.13

#e optimization model generated a variety of possible distribution plans 
that served as input to the prediction model. #is input provided a destina-
tion assignment (i.e. auction site) for each off- lease car, which the prediction 
model used to generate a predicted sale price. #e optimization model then 
summed all these predicted prices (i.e. the output data) to evaluate the quality 
of the distribution plan—the higher the sum of the predicted sale prices, the 
better the distribution plan. Hence, there was a strong relationship between 
the prediction and optimization models, as is the case within most Decision 
Optimization Systems. 

#e optimization model was comprised of several different AI- based algo-
rithms that used different solution representations. For instance, evolutionary 
algorithms (see Chapter 6.7) used solutions based on indirect representation, 
where all available auction sites were sorted by distance from a particular car. 
In other words, auction 1 was the closest (distance- wise), auction 2 was the 
second closest, and so forth. Hence, each solution was represented by a vector 
of auction site indices (relative to a particular car), and the length of the 
vector was equal to the number of cars being distributed: 

3 4 4 … 1 1

#e vector above represents a solution where the first car is shipped to the third 
closest auction (for this particular car), the second car is shipped to the fourth 
closest auction (for this particular car), the third car is shipped also to the 
fourth closest auction (note, however, that the second and third car are most 
likely shipped to different auction sites, as the fourth closest auction for the 
second and third car need not be the same), and so on, with the last two cars 
being shipped to the closest auction sites. In this particular implementation of 
evolutionary algorithms, the optimization model applied the elitist strategy, 
which forced the best solution from one generation to the next, as well as 
various mutation and crossover operators that were discovered through experi-
mentation. For additional information on the optimization model used within 
the GMAC Decision Optimization System, please watch the supplementary 
video at: www.Complexica.com/RiseofAI/Chapter6.

To enable learning within the Decision Optimization System, both the 
prediction and optimization models updated themselves with the arrival of 

13 Data about sold cars was also used to tune the prediction model (explained later in this 
section).
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new data. #e prediction model contained numerous parameters (different 
values for various adjustments) that were automatically updated to capture 
changing trends in the used car marketplace at regular intervals (as discussed 
in Chapter 7.2), and in terms of optimization, each day brought a different 
“instance” of the same problem, as changes occurred in the number and type 
of cars to be distributed. For this reason, the optimization model was based on 
several optimization algorithms where each algorithm contained a few param-
eters that were adapted (as discussed in Chapter 7.3), and the usage of several 
optimization algorithms together generated a result that was better than the 
result of any single algorithm. For additional information on the learning 
components of this case study, please watch the supplementary video at: www.
Complexica.com/RiseofAI/Chapter7.

#e graphical user interface of the Decision Optimization System allowed 
GMAC to add, modify, or delete various constraints and business rules (as dis-
cussed earlier), as well as “visualize” the distribution plan. In the screen below, 
there are icons for each distribution center and each auction site, and four per-
formance graphs. #e white “horseshoe” icons represent distribution centers 
where off- lease cars are collected, cleaned, and conditioned for eventual sale 
at an auction site.14 #e red “hammer” icons represent auction sites, and the 
lines between the distribution centers and auction sites represent the volume 
of cars transported between these points (the thicker the line, the more cars 
are transported): 

14 Only the largest leasing companies—such as GMAC—have such distribution centers. For 
leasing companies that do have them, an off-lease car is dropped off at a dealership, then 
shipped to the nearest distribution center for cleaning and conditioning, and then the 
Decision Optimization System ships the car to the best auction site. For leasing companies 
that don’t have distribution centers, the car would be cleaned and conditioned at the dealer-
ship, and the Decision Optimization System would ship the car to the best auction site 
directly from the dealership.
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#e four graphs on the left- hand side display the optimization objectives: 

• Average Transportation Cost. #e Decision Optimization System calculates 
the total transportation cost and then displays the average cost per car. 

• Average Volume Effect. #e Decision Optimization System calculates the 
total lost revenue due to sending too many similar cars to the same 
auction sites and then displays the average value lost per car.

• Average Sale Price. #e Decision Optimization System calculates the 
expected sale price for all the cars and then displays the average value 
per car.

• Average (Net Sale Price) Lift. #is corresponds to the average “profit 
improvement” per car. #e Decision Optimization System calculates 
this as the difference between the predicted average net sale price for 
the optimized solution (i.e. the sale price after subtracting all auction 
fees, transportation costs, etc.), and the predicted net sale price for the 
standard solution (which was based on expert rules that were developed 
by GMAC over the years).

In the screen above, the average transportation cost per car (first graph) has 
steadily decreased during the optimization run, while the average volume 
effect per car (second graph) has increased. #e Decision Optimization System 
has chosen a distribution plan with a higher average volume effect, because it 
was more than offset by a lower average transportation cost and higher average 
sale price per car. #is in turn resulted in a higher average (net sale price) lift 
per car (fourth graph).

Once the optimization process is complete, the Decision Optimization 
System generated an output file with the recommended distribution of cars, 
specifying the distribution center, recommended auction site, predicted sale 
price, transportation cost, and other data:
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An auction inventory report (below) was used to show inventory at each auction 
site, the number of cars being sent to each auction, the projected number of 
cars at each auction, and whether or not any inventory constraints are violated:

When used in a high- volume setting—where thousands of cars are returned 
off- lease each day—the Decision Optimization System generated a net profit 
lift in the hundreds of millions of dollars per year (by predicting the auction 
site at which GMAC could maximize the resale value of each car, and then 
optimizing the logistics). #ere were a few ways to validate this financial result:

• One way was by dividing the daily intake of returned off- lease cars into 
two equal groups with an almost identical division of makes/models. 
One group would be distributed using the manual method, whereas the 
Decision Optimization System would distribute the other group, and 
then the results would be compared. 

• Another way was by using the manual method on selected days of 
the week (e.g. Mondays, Wednesdays, and Fridays) and the Decision 
Optimization System for the remaining days (e.g. Tuesdays and 
#ursdays). Again, the results could be compared when all cars were 
sold and the aggregate prices known. 
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• And the third way was by using the Decision Optimization System for 
one year and then comparing the average sale price with that of the 
previous year (before the system was implemented). 

Using this last method (year- by- year comparison), the benchmark would need 
to be a trusted pricing source, like the Black Book price guide. GMAC applied 
this particular method by selecting a subset of cars with the same makes/
models, year, trim, etc. and compared the average sale price of these cars with 
the average Black Book sale price for 2003 (before the Decision Optimization 
System was implemented). A chart depicting this comparison is presented 
below:

In this example, the average Black Book sale price for a particular mix 
of makes/models, year, trim, etc. in 2003 was $9,587 per car, and GMAC 
sold these cars for an average of $9,620 per car, or 0.344% higher than the 
Black Book sale price. #e next step would be to compare the sale prices in 
2004 (when the Decision Optimization System replaced the manual method 
of distributing cars) against the Black Book sale prices for that year. In this 
example, the average Black Book sale price was $9,259 per car in 2004, and 
the average actual sale price obtained by the system was $9,724. If the cars 
had been distributed using the manual method in 2004 (termed “old model” 
in the chart above), then GMAC would have attained similar results to those 
of the previous year (i.e. a 0.344% improvement over the Black Book bench-
mark, or an average of $9,291 per car). Using this approach, GMAC could 
credit the Decision Optimization System with the increased average sales price 
of $9,724 minus $9,291, or $433 per car. With one million cars being distrib-
uted on an annual basis, this result represented $433,000,000 in additional 
revenue, not to mention automation of a business process that required a sub-
stantial amount of time and human effort.
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And lastly, as discussed in Chapter 6.10, the concept of global optimiza-
tion was highly relevant to this distribution problem given the scale of the 
problem (e.g. million cars per year) and complexity (e.g. number of possible 
solutions, volume effect, price changes, transportation costs, etc.). A tempting 
approach for dealing with this scale and complexity would have been to break 
the overall problem into smaller “pieces”; for example, breaking up the United 
States into six regions that each dealt with a subset of the overall problem. 
#is approach could have been taken further by breaking the problem apart 
into individual states or distribution centers, solving these individual pieces, 
and then “assembling” the pieces into an overall distribution plan. Although 
this would have made the problem easier to solve, the result would have been 
substantially inferior in comparison to solving the problem in its entirety 
(because the Decision Optimization System could consider and balance the 
volume effect, price changes, depreciation, and more across the entire United 
States, rather than being constrained to a particular state, site, or region). 
As this case study illustrates, the financial result of global optimization can 
be substantial, but the amount of complexity that needs to be addressed is 
equally substantial.
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